精英家教网 > 高中数学 > 题目详情

已知函数,且
(1)求的值;
(2)求函数的单调区间;
(3)设函数,若函数上单调递增,求实数的取值范围.

(1)
(2递增区间是的单调递减区间是
(3)≥11.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,讨论函数的单调性;
(2)当时,在函数图象上取不同两点A、B,设线段AB的中点为,试探究函数在Q点处的切线与直线AB的位置关系?
(3)试判断当图象是否存在不同的两点A、B具有(2)问中所得出的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(1)若曲线与曲线在它们的交点处的切线互相垂直,求的值;
(2)设,若对任意的,且,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,证明:当时,
(2)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最大值;
(2)若,求的取值范围.
(3)证明:  +(n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数上是减函数,求实数的取值范围;
(2)是否存在实数,当是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;
(3)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2011•浙江)设函数f(x)=(x﹣a)2lnx,a∈R
(1)若x=e为y=f(x)的极值点,求实数a;
(2)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.若曲线在点处的切线与直线垂直,
(1)求实数的值;
(2)求函数的单调区间;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数()
(1)当a=2时,求在区间[e,e2]上的最大值和最小值;
(2)如果函数在公共定义域D上,满足<<,那么就称的“伴随函数”.已知函数,若在区间(1,+∞)上,函数的“伴随函数”,求a的取值范围。

查看答案和解析>>

同步练习册答案