精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+cx+d是R上的奇函数,且在x=1时取得极小值-
2
3

(1)求函数f(x)的解析式;
(2)对任意x1,x2∈[-1,1],证明:f(x1)-f(x2)≤
4
3
(1)可知b=d=0,(2分)
所以f′(x)=3ax2+c
可知
f′1=0
f1=-
2
3
3a+c=0
a+c=-
2
3
a=
1
3
c=-1

经检验知:f(x)=
1
3
x3-x(4分)
(2)即证f(x)max-f(x)min
4
3
(6分)
因为f′(x)=x2-1,所以x∈[-1,1]时f′(x)≤0,从而函数f(x)在[-1,1]上单调递减,
所以f(x)max=f(-1)=
2
3
,f(x)min=f(1)=-
2
3

所以f(x)max-f(x)min
4
3

从而对任意x1,x2∈[-1,1],有f(x1)-f(x2)≤
4
3
,(10分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax+blnx.
(1)当x=2时f(x)取得极小值2-2ln2,求a,b的值;
(2)当b=-1时,若在区间(0,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-
1
2
x2+bx+c
,且f(x)在x=1处取得极值.
(1)求b的值;
(2)若当x∈[1,2]时,f(x)<c2恒成立,求c的取值范围;
(3)c为何值时,曲线y=f(x)与x轴仅有一个交点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=alnx+x2(a为实常数).
(1)当a=-4时,求函数f(x)在[1,e]上的最大值及相应的x值;
(2)当x∈[1,e]时,讨论方程f(x)=0根的个数.
(3)若a>0,且对任意的x1,x2∈[1,e],都有|f(x1)-f(x2)|≤|
1
x1
-
1
x2
|
,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=ax3-3x+1对x∈(0,1]总有f(x)≥0成立.则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+xsinx+cosx.
(1)求f(x)的最小值;
(2)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(Ⅰ)若年销售量增加的比例为0.4x,为使本年度的年利润比上年度有所增加,则投入成本增加
的比例x应在什么范围内?
(Ⅱ)年销售量关于x的函数为y=3240(-x2+2x+
5
3
)
,则当x为何值时,本年度的年利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+ax2+2(a∈R)且曲线y=f(x)在点(2,f(2))处切线斜率为0.
求:(Ⅰ)a的值;
(Ⅱ)f(x)在区间[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

    (  )
A.B.C.D.不存在

查看答案和解析>>

同步练习册答案