精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+blnx.
(1)当x=2时f(x)取得极小值2-2ln2,求a,b的值;
(2)当b=-1时,若在区间(0,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.
(1)求导函数可得:f'(x)=a+
b
x

∵当x=2时,f(x)取得极小值2-2ln2,
∴f'(2)=0,f(2)=2-2ln2
∴2a+b=0,2a+bln2=2-2ln2
∴a=1,b=-2
此时f'(x)=1-
2
x

当x∈(0,2)时,f'(x)<0;当x∈(2,+∞)时,f'(x)>0
∴当x=2时,f(x)取得极小值
∴a=1,b=-2
(2)b=-1时,f(x)=ax-lnx,求导函数可得f'(x)=a-
1
x
=
ax-1
x

若在区间(0,e]上至少存在一点x0,使得f(x0)<0成立,则f(x)=ax-lnx在区间(0,e]上的最小值<0
①当a≤0时,f'(x)<0恒成立,f(x)在区间(0,e]上递减
由f(x)min=f(e)=ae-1<0得a<
1
e
,∴a≤0符合题意
②当0<
1
a
<e,即a>
1
e
时,x∈(0,
1
a
),f'(x)<0,f(x)递减;x∈(
1
a
,e),f'(x)>0,f(x)递增
∴f(x)min=f(
1
a
)=1-ln
1
a
=1+lna
由lna+1<0得a<
1
e
,矛盾
③当
1
a
≥e,即0<a≤
1
e
时,f(x)在(0,e]上为减函数,f(x)min=f(e)=ae-1<0
∴0<a<
1
e

综上所述,符合条件的a的取值范围是a<
1
e
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

点M(m,4)m>0为抛物线x2=2py(p>0)上一点,F为其焦点,已知|FM|=5,
(1)求m与p的值;
(2)以M点为切点作抛物线的切线,交y轴与点N,求△FMN的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-ax+a(a∈R),g(x)=x2+2x+m(x<0).
(1)讨论f(x)的单调性;
(2)若a=0,函数y=f(x)在A(2,f(2))处的切线与函数y=g(x)相切于B(x0,g(x0)),求实数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线f(x)=x-
1
2
在点(a,f(a))处的切线与两条坐标轴围成的三角形的面积为18,则a=(  )
A.64B.32C.16D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=-x3+3x在[-2,2]上的最大值是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三次函数f(x)的导函数f′(x)=3x2-3ax,f(0)=b,(a、b实数).若f(x)在区间[-1,1]上的最小值、最大值分别为-2,1,且1<a<2,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3-ax2+(a2-1)x+b(a,b∈R).
(1)若x=1为f(x)的极值点,求a的值.
(2)若y=f(x)的图象在(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3-
1
2
x2+cx+d在x=2处取得极值.
(1)求c的值;
(2)当x<0时,f(x)<
1
6
d2+2d恒成立,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx2+cx+d是R上的奇函数,且在x=1时取得极小值-
2
3

(1)求函数f(x)的解析式;
(2)对任意x1,x2∈[-1,1],证明:f(x1)-f(x2)≤
4
3

查看答案和解析>>

同步练习册答案