精英家教网 > 高中数学 > 题目详情
函数f(x)=-x3+3x在[-2,2]上的最大值是(  )
A.0B.1C.2D.3
由f(x)=-x3+3x,得f′(x)=-3x2+3=-3(x+1)(x-1).
当x∈(-2,-1),x∈(1,2)时,f′(x)<0,
所以函数f(x)在(-2,-1),(1,2)上为减函数;
当x∈(-1,1)时,f′(x)>0,所以函数f(x)在(-1,1)上为增函数.
由f(-2)=2,f(1)=2.
所以函数f(x)=-x3+3x在[-2,2]上的最大值是2.
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数y=x3-3x2
(1)求函数的极小值;
(2)求函数的递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面向量
a
=(
3
,-1)
b
=(
1
2
3
2
)

(1)证明:
a
b

(2)若存在不同时为零的实数k和g,使
x
=
a
+(g2-3)
b
y
=-k
a
+g
b
,且
x
y
,试求函数关系式k=f(g);
(3)椐(2)的结论,讨论关于g的方程f(g)-k=0的解的情况.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线y=log2x在点(1,0)处的切线与坐标轴所围三角形的面积等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x
1-2x

(1)求x0,使f′(x0)=0;
(2)求函数f(x)在区间[-1,
1
2
]的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax+blnx.
(1)当x=2时f(x)取得极小值2-2ln2,求a,b的值;
(2)当b=-1时,若在区间(0,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在区间[-2,t](t>-2)上的函数f(x)=(x2-3x+3)ex
(Ⅰ)当t>1时,求函数y=f(x)的单调区间;
(Ⅱ)设m=f(-2),n=f(t).试证明:m<n;
(Ⅲ)设g(x)=f(x)+(x-2)ex,当x>1时试判断方程g(x)=x根的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若x∈[0,+∞),则下列不等式恒成立的是(  )
A.ex≤1+x+x2B.
1
1+x
≤1-
1
2
x+
1
4
x2
C.cosx≥1-
1
2
x2
D.ln(1+x)≥x-
1
8
x2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=ax3-3x+1对x∈(0,1]总有f(x)≥0成立.则实数a的取值范围是______.

查看答案和解析>>

同步练习册答案