精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-ax+a(a∈R),g(x)=x2+2x+m(x<0).
(1)讨论f(x)的单调性;
(2)若a=0,函数y=f(x)在A(2,f(2))处的切线与函数y=g(x)相切于B(x0,g(x0)),求实数m的值.
(1)∵f(x)=lnx-ax+a(a∈R),
f′(x)=
1-ax
x
,x>0,
若a≤0,则f′(x)>0,
∴f(x)在(0,+∞)上单调递增;
若a>0,则当x∈(0,
1
a
)
时,f′(x)>0,
∴f(x)在(0,
1
a
)上单调递增,当x∈(
1
a
,+∞)时,f′(x)<0,
∴f(x)在∈(
1
a
,+∞)上单调递减;
(2)当a=0时,f(x)=lnx,f′(x)=
1
x

∴f′(2)=
1
2

∴函数y=f(x)在A(2,f(2))处的切线方程为y=
1
2
(x-2)+ln2

又函数y=g(x)在B(x0,g(x0))处的切线方程为y=(2x0+2)(x-x0)+x02+2x0+m
整理得y=(2x0+2)x-x02+m
由已知得
1
2
=2(x0+1)
ln2-1=-x02+m

解得x0=-
3
4
,m=-
7
16
+ln2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-2x.
(Ⅰ)指出函数f(x)值域和单调减区间;
(Ⅱ)求函数f(x)在(0,0)点处的切线方程;
(Ⅲ)求f(x-1)>0的解集.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3-
3
2
x2+2x+5

(Ⅰ)求f(x)的单调区间;
(Ⅱ)若曲线y=f(x)与y=2x+m有三个不同的交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面向量
a
=(
3
,-1)
b
=(
1
2
3
2
)

(1)证明:
a
b

(2)若存在不同时为零的实数k和g,使
x
=
a
+(g2-3)
b
y
=-k
a
+g
b
,且
x
y
,试求函数关系式k=f(g);
(3)椐(2)的结论,讨论关于g的方程f(g)-k=0的解的情况.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=x3+1在x=0处的切线的斜率是(  )
A.-1B.0C.
1
2
D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线y=log2x在点(1,0)处的切线与坐标轴所围三角形的面积等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax+blnx.
(1)当x=2时f(x)取得极小值2-2ln2,求a,b的值;
(2)当b=-1时,若在区间(0,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-
1
2
x2+bx+c
,且f(x)在x=1处取得极值.
(1)求b的值;
(2)若当x∈[1,2]时,f(x)<c2恒成立,求c的取值范围;
(3)c为何值时,曲线y=f(x)与x轴仅有一个交点.

查看答案和解析>>

同步练习册答案