精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2x.
(Ⅰ)指出函数f(x)值域和单调减区间;
(Ⅱ)求函数f(x)在(0,0)点处的切线方程;
(Ⅲ)求f(x-1)>0的解集.
(Ⅰ)画出函数f(x)=x2-2x的图象,如图,是一抛物线,顶点坐标为(1,-1),对称轴是x=1,开口向上,得:
f(x)值域是[-1,+∞);f(x)单调减区间(-∞,-1).…(4分)
(Ⅱ)因为f′(x)=2x-2,
所以f′(0)=-2.
所以y-0=-2(x-0)
所以f(x)在(0,0)点处的切线方程y=-2x.…(8分)
(Ⅲ)因为f(x-1)=(x-1)2-2(x-1)=(x-1)(x-3)
所以f(x-1)>0的解集就是(x-1)(x-3)>0的解集.
解得:{x|x<1或x>3}.f(x-1)>0的解集{x|x<1或x>3}.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

求曲线y=
1
x
和y=x2在它们交点处的两条切线与x轴所围成的三角形面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx2+(c-3a-2b)x+d的图象如图所示.
(1)求c,d的值;
(2)若函数f(x)在x=2处的切线方程为3x+y-11=0,求函数f(x)的
解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

点M(m,4)m>0为抛物线x2=2py(p>0)上一点,F为其焦点,已知|FM|=5,
(1)求m与p的值;
(2)以M点为切点作抛物线的切线,交y轴与点N,求△FMN的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,x=±1是函数f(x)=ax3+bx2+cx+d的两个极值点,f′(x)为函数f(x)的导函数,则不等式x•f′(x)>0的解集为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=mx-
m
x
,g(x)=2lnx
(1)当m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当m=1时,证明方程f(x)=g(x)有且仅有一个实数根;
(3)若x∈(1,e]时,不等式f(x)-g(x)<2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若不等式x+2
2xy
≤a(x+y)对一切正数x、y恒成立,则正数a的最小值为(  )
A.1B.2C.
2
+
1
2
D.2
2
+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-ax+a(a∈R),g(x)=x2+2x+m(x<0).
(1)讨论f(x)的单调性;
(2)若a=0,函数y=f(x)在A(2,f(2))处的切线与函数y=g(x)相切于B(x0,g(x0)),求实数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3-ax2+(a2-1)x+b(a,b∈R).
(1)若x=1为f(x)的极值点,求a的值.
(2)若y=f(x)的图象在(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值.

查看答案和解析>>

同步练习册答案