精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3-ax2+(a2-1)x+b(a,b∈R).
(1)若x=1为f(x)的极值点,求a的值.
(2)若y=f(x)的图象在(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值.
(1)求导函数可得f′(x)=x2-2ax+a2-1
∵x=1是f(x)的极值点,∴f′(1)=0,∴a2-2a=0,∴a=0或2
(2)∵(1,f(1))在x+y-3=0上,∴f(1)=2
∵(1,2)在y=f(x)的图象上,∴2=
1
3
-a+a2-1+b
又∵f′(1)=-1,∴1-2a+a2-1=-1,∴a2-2a+1=0
∴a=1,b=
8
3

f(x)=
1
3
x3-x2+
8
3

∴f′(x)=x2-2x
∴由f′(x)=0,可知x=0和x=2是f(x)的极值点
f(0)=
8
3
f(2)=
4
3
,f(-2)=-4,f(4)=8
∴f(x)在区间[-2,4]上的最大值为8
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-2x.
(Ⅰ)指出函数f(x)值域和单调减区间;
(Ⅱ)求函数f(x)在(0,0)点处的切线方程;
(Ⅲ)求f(x-1)>0的解集.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线y=log2x在点(1,0)处的切线与坐标轴所围三角形的面积等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax+blnx.
(1)当x=2时f(x)取得极小值2-2ln2,求a,b的值;
(2)当b=-1时,若在区间(0,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在区间[-2,t](t>-2)上的函数f(x)=(x2-3x+3)ex
(Ⅰ)当t>1时,求函数y=f(x)的单调区间;
(Ⅱ)设m=f(-2),n=f(t).试证明:m<n;
(Ⅲ)设g(x)=f(x)+(x-2)ex,当x>1时试判断方程g(x)=x根的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3+
1-a
2
x2-ax-a,x∈R,其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t).记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若x∈[0,+∞),则下列不等式恒成立的是(  )
A.ex≤1+x+x2B.
1
1+x
≤1-
1
2
x+
1
4
x2
C.cosx≥1-
1
2
x2
D.ln(1+x)≥x-
1
8
x2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-
1
2
x2+bx+c
,且f(x)在x=1处取得极值.
(1)求b的值;
(2)若当x∈[1,2]时,f(x)<c2恒成立,求c的取值范围;
(3)c为何值时,曲线y=f(x)与x轴仅有一个交点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(Ⅰ)若年销售量增加的比例为0.4x,为使本年度的年利润比上年度有所增加,则投入成本增加
的比例x应在什么范围内?
(Ⅱ)年销售量关于x的函数为y=3240(-x2+2x+
5
3
)
,则当x为何值时,本年度的年利润最大?最大利润为多少?

查看答案和解析>>

同步练习册答案