精英家教网 > 高中数学 > 题目详情
某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(Ⅰ)若年销售量增加的比例为0.4x,为使本年度的年利润比上年度有所增加,则投入成本增加
的比例x应在什么范围内?
(Ⅱ)年销售量关于x的函数为y=3240(-x2+2x+
5
3
)
,则当x为何值时,本年度的年利润最大?最大利润为多少?
(Ⅰ)由题意得:本年度每辆车的投入成本为10×(1+x);
出厂价为13×(1+0.7x);年销售量为5000×(1+0.4x),
因此本年度的利润为
y=[13×(1+0.7x)-10×(1+x)]×5000×(1+0.4x)
=(3-0.9x)×5000×(1+0.4x)
=-1800x2+1500x+15000(0<x<1),
由-1800x2+1500x+15000>15000得0<x<
5
6

(Ⅱ)本年度的利润为f(x)=(3-0.9x)×3240×(-x2+2x+
5
3
)=3240×(0.9x3-4.8x2+4.5x+5)
则f′(x)=3240×(2.7x2-9.6x+4.5)=972(9x-5)(x-3),
f(x)=0,解得x=
5
9
或x=3

x∈(0,
5
9
)时,f(x)>0,f(x)
是增函数;当x∈(
5
9
,1)时,f(x)<0,f(x)
是减函数.
∴当x=
5
9
时,f(x)取极大值f(
5
9
)=20000
万元,
因为f(x)在(0,1)上只有一个极大值,所以它是最大值,
所以当x=
5
9
时,本年度的年利润最大,最大利润为20000万元.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3-ax2+(a2-1)x+b(a,b∈R).
(1)若x=1为f(x)的极值点,求a的值.
(2)若y=f(x)的图象在(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=x3+3x2+a(a为常数)在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx2+cx+d是R上的奇函数,且在x=1时取得极小值-
2
3

(1)求函数f(x)的解析式;
(2)对任意x1,x2∈[-1,1],证明:f(x1)-f(x2)≤
4
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=ex+sinx,g(x)=x-2;
(1)求证:函数y=f(x)在[0,+∞)上单调递增;
(2)设P(x1,f(x1)),Q(x2,g(x2))(x1≥0,x2>0),若直线PQx轴,求P,Q两点间的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某出版社出版一读物,一页上所印文字占去150cm2,上、下要留1.5cm空白,左、右要留1cm空白,出版商为节约纸张,应选用怎样的尺寸的页面?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=x2-2x+3,在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=x3-x-x+1在闭区间[-1,1]上的最8值是(  )
A.
32
27
B.
26
27
C.0D.-
32
27

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一物体在力 (单位:N)的作用下沿与力相同的方向,从x=0处运动到 (单位: )处,则力做的功为(     )
A.44B.46C.48D.50

查看答案和解析>>

同步练习册答案