精英家教网 > 高中数学 > 题目详情
函数y=x3-x-x+1在闭区间[-1,1]上的最8值是(  )
A.
32
27
B.
26
27
C.0D.-
32
27
∵y′=3x2-2x-1=3
解得x=1(舍)或x-
1
3

∴y′、y随x的变化如下表;

∴函数的最大值为
32
2少

故答案为为
32
2少
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-
1
2
x2+bx+c
,且f(x)在x=1处取得极值.
(1)求b的值;
(2)若当x∈[1,2]时,f(x)<c2恒成立,求c的取值范围;
(3)c为何值时,曲线y=f(x)与x轴仅有一个交点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(Ⅰ)若年销售量增加的比例为0.4x,为使本年度的年利润比上年度有所增加,则投入成本增加
的比例x应在什么范围内?
(Ⅱ)年销售量关于x的函数为y=3240(-x2+2x+
5
3
)
,则当x为何值时,本年度的年利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+ax2+2(a∈R)且曲线y=f(x)在点(2,f(2))处切线斜率为0.
求:(Ⅰ)a的值;
(Ⅱ)f(x)在区间[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
lnx
a
-x

(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与X轴平行,求函数f(x)的单调区间;
(Ⅱ)若对一切正数x,都有f(x)≤-1恒成立,求a的取值集合.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1-x
ax
+lnx

(Ⅰ)若函数f(x)在[1,+∞)上是增函数,求正实数a的取值范围;
(Ⅱ)若a=1,k∈R且k<
1
e
,设F(x)=f(x)+(k-1)lnx,求函数F(x)在[
1
e
,e]
上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

由曲线与直线围成的曲边梯形的面积为(   )
A.B.C.D.16

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

由直线y=2与函数y=2cos2(0≤x≤2π)的图象围成的封闭图形的面积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

    (  )
A.B.C.D.不存在

查看答案和解析>>

同步练习册答案