精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+xsinx+cosx.
(1)求f(x)的最小值;
(2)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值.
(1)由f(x)=x2+xsinx+cosx,
得f′(x)=2x+sinx+xcosx-sinx=x(2+cosx).
令f′(x)=0,得x=0.
列表如下:

∴函数f(x)在区间(-∞,0)上单调递减,
在区间(0,+∞)上单调递增,
∴f(0)=1是f(x)的最小值;
(2)∵曲线y=f(x)在点(a,f(a))处与直线y=b相切,
∴f′(a)=a(2+cosa)=0,b=f(a),
解得a=0,b=f(0)=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知三次函数f(x)的导函数f′(x)=3x2-3ax,f(0)=b,(a、b实数).若f(x)在区间[-1,1]上的最小值、最大值分别为-2,1,且1<a<2,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=2x2-
1
3
x3
在区间[0,6]上的最大值是(  )
A.
32
3
B.
16
3
C.12D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的两侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足D与A相距50km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为3a元和5a元,问供水站C建在何处才能使水管费用最省?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx2+cx+d是R上的奇函数,且在x=1时取得极小值-
2
3

(1)求函数f(x)的解析式;
(2)对任意x1,x2∈[-1,1],证明:f(x1)-f(x2)≤
4
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-ax+2lnx(其中a是实数).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若2(
e
+
1
e
)<a<5
,且f(x)有两个极值点x1,x2(x1<x2),求|f(x1)-f(x2)|的取值范围.(其中e是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某出版社出版一读物,一页上所印文字占去150cm2,上、下要留1.5cm空白,左、右要留1cm空白,出版商为节约纸张,应选用怎样的尺寸的页面?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=xsinx在x=x0处取得极值,则(1+x02)cos2x0的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线在第一象限内围成的封闭图形的面积为(   )
A.B.C.D.4

查看答案和解析>>

同步练习册答案