精英家教网 > 高中数学 > 题目详情
某中学从高中三个年级选派4名教师和20名学生去当文明交通宣传志愿者,20名学生的名额分配为高一12人,高二6人,高三2人.
(1)若从20名学生中选出3人做为组长,求他们中恰好有1人是高一年级学生的概率;
(2)若将4名教师随机安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.
(1) ;(2)详见解析.

试题分析:(1)从高一12人中选出1人,从高二和高三共8人中选出2人的事件为A,,计算得到结果;(2)每位教师选择高一年级的概率均为,并且相互独立,X的所有取值为0,1,2,3,4.,,,然后列出随机变量X的概率分布列,利用,或是利用二项分布的期望公式,得出结果.随机变量的概率,分布列,期望还是高考的重点内容,属于基础题型,
试题解析:(1)解:设 “他们中恰好有1人是高一年级学生” 为事件

所以恰好有1人是高一年级学生的概率为.           4分
(2)解:X的所有取值为0,1,2,3,4.           6分
由题意可知,每位教师选择高一年级的概率均为,         7分
所以


随机变量X的分布列为:
X
0
1
2
3
4
P





                                                           12分
所以.     13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球。活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金。
(1)求员工甲抽奖一次所得奖金ξ的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将编号为1,2,3,4的四个小球,分别放入编号为1,2,3,4的四个盒子,每个盒子中有且仅有一个小球.若小球的编号与盒子的编号相同,得1分,否则得0分.记为四个小球得分总和.
(1)求时的概率;
(2)求的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若n∈N*,且n为奇数,则6n+C
1n
•6n-1+C
2n
•6n-2+…+C
n-1n
•6被8除所得的余数是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.
(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A“取出的2件产品都是二等品”的概率P(A)=0.04
(1)求从该批产品中任取1件是二等品的概率;
(2)若该批产品共10件,从中任意抽取2件;X表示取出的2件产品中二等品的件数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P(ξ=2)=   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

由于某高中建设了新校区,为了交通方便要用三辆通勤车从新校区把教师接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为p,不堵车的概率为1-p,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(1)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率;
(2)在(1)的条件下,求三辆汽车中被堵车辆的个数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设随机变量X的分布为,则的值为     

查看答案和解析>>

同步练习册答案