【题目】已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围
(2)(1)求F(x)的最小值m(a)
(3)求F(x)在[0,6]上的最大值M(a)
【答案】
(1)
由a≥3,故x≤1时,
x2﹣2ax+4a﹣2﹣2|x﹣1|=x2+2(a﹣1)(2﹣x)>0;
当x>1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2﹣(2+2a)x+4a=(x﹣2)(x﹣2a),
则等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围是(2,2a)
(2)
(1)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,
则f(x)min=f(1)=0,g(x)min=g(a)=﹣a2+4a﹣2.
由﹣a2+4a﹣2=0,解得a=2+ (负的舍去),
由F(x)的定义可得m(a)=min{f(1),g(a)},
即m(a)=
(3)
当0≤x≤2时,F(x)≤f(x)≤max{f(0),f(2)}=2=F(2);
当2<x≤6时,F(x)≤g(x)≤max{g(2),g(6)}
=max{2,34﹣8a}=max{F(2),F(6)}.
则M(a)=
【解析】(1)由a≥3,讨论x≤1时,x>1,去掉绝对值,化简x2﹣2ax+4a﹣2﹣2|x﹣1|,判断符号,即可得到F(x)=x2﹣2ax+4a﹣2成立的x的取值范围;(2)(1)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,求得f(x)和g(x)的最小值,再由新定义,可得F(x)的最小值;(2)分别对当0≤x≤2时,当2<x≤6时,讨论F(x)的最大值,即可得到F(x)在[0,6]上的最大值M(a).本题考查新定义的理解和运用,考查分类讨论的思想方法,以及二次函数的最值的求法,不等式的性质,考查化简整理的运算能力,属于中档题.
【考点精析】根据题目的已知条件,利用函数的最值及其几何意义的相关知识可以得到问题的答案,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.
科目:高中数学 来源: 题型:
【题目】如图,是东西方向的公路北侧的边缘线,某公司准备在上的一点的正北方向的处建设一仓库,设,并在公路北侧建造边长为的正方形无顶中转站(其中在上),现从仓库向和中转站分别修两条道路,已知,且.
(1)求关于的函数解析式,并求出定义域;
(2)如果中转站四堵围墙造价为10万元,两条道路造价为30万元,问:取何值时,该公司建设中转站围墙和两条道路总造价最低.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两校各有3名教师报名支教,期中甲校2男1女,乙校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 且函数y=f(x)﹣x恰有3个不同的零点,则实数a的取值范围是( )
A.(0,+∞)
B.[﹣1,0)
C.[﹣1,+∞)
D.[﹣2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】写出下列各组命题构成的“p或q”、“p且q”以及“非p”形式的命题,并判断它们的真假.
(1) 是有理数,q: 是整数;
(2)不等式x2-2x-3>0的解集是(-∞,-1),q:不等式x2-2x-3>0的解集是(3,+∞).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 的反函数为 ,等比数列{an}的公比为2,若 ,则 =( )
A.21004×2016
B.21005×2015
C.21005×2016
D.21008×2015
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在圆上任取一点,过点向轴作垂线段,垂足为,当点在圆上运动时,线段的中点的轨迹为.
(1)求曲线的方程;
(2)过点(0,-2)作直线与交于两点,(O为原点),求三角形面积的最大值,并求此时的直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若直线ax﹣by+2=0(a>0,b>0)和函数f(x)=ax+1+1(a>0且a≠1)的图象恒过同一个定点,则当 + 取最小值时,函数f(x)的解析式是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com