精英家教网 > 高中数学 > 题目详情

【题目】已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围
(2)(1)求F(x)的最小值m(a)
(3)求F(x)在[0,6]上的最大值M(a)

【答案】
(1)

由a≥3,故x≤1时,

x2﹣2ax+4a﹣2﹣2|x﹣1|=x2+2(a﹣1)(2﹣x)>0;

当x>1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2﹣(2+2a)x+4a=(x﹣2)(x﹣2a),

则等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围是(2,2a)


(2)

(1)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,

则f(x)min=f(1)=0,g(x)min=g(a)=﹣a2+4a﹣2.

由﹣a2+4a﹣2=0,解得a=2+ (负的舍去),

由F(x)的定义可得m(a)=min{f(1),g(a)},

即m(a)=


(3)

当0≤x≤2时,F(x)≤f(x)≤max{f(0),f(2)}=2=F(2);

当2<x≤6时,F(x)≤g(x)≤max{g(2),g(6)}

=max{2,34﹣8a}=max{F(2),F(6)}.

则M(a)=


【解析】(1)由a≥3,讨论x≤1时,x>1,去掉绝对值,化简x2﹣2ax+4a﹣2﹣2|x﹣1|,判断符号,即可得到F(x)=x2﹣2ax+4a﹣2成立的x的取值范围;(2)(1)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,求得f(x)和g(x)的最小值,再由新定义,可得F(x)的最小值;(2)分别对当0≤x≤2时,当2<x≤6时,讨论F(x)的最大值,即可得到F(x)在[0,6]上的最大值M(a).本题考查新定义的理解和运用,考查分类讨论的思想方法,以及二次函数的最值的求法,不等式的性质,考查化简整理的运算能力,属于中档题.
【考点精析】根据题目的已知条件,利用函数的最值及其几何意义的相关知识可以得到问题的答案,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,是东西方向的公路北侧的边缘线,某公司准备在上的一点的正北方向的处建设一仓库,设,并在公路北侧建造边长为的正方形无顶中转站(其中上),现从仓库和中转站分别修两条道路,已知,且

(1)求关于的函数解析式,并求出定义域;

(2)如果中转站四堵围墙造价为10万元,两条道路造价为30万元,问:取何值时,该公司建设中转站围墙和两条道路总造价最低.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两校各有3名教师报名支教,期中甲校2男1女,乙校1男2女.

(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;

(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的函数 满足 ,其导函数 满足 ,则下列结论中一定错误的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 且函数y=f(x)﹣x恰有3个不同的零点,则实数a的取值范围是(
A.(0,+∞)
B.[﹣1,0)
C.[﹣1,+∞)
D.[﹣2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下列各组命题构成的“pq”、“pq”以及“非p”形式的命题,并判断它们的真假.
(1) 是有理数,q 是整数;
(2)不等式x2-2x-3>0的解集是(-∞,-1),q:不等式x2-2x-3>0的解集是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的反函数为 ,等比数列{an}的公比为2,若 ,则 =(
A.21004×2016
B.21005×2015
C.21005×2016
D.21008×2015

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆上任取一点,过点轴作垂线段,垂足为当点在圆上运动时,线段的中点的轨迹为.

(1)求曲线的方程;

(2)过点(0,-2)作直线交于两点,(O为原点),求三角形面积的最大值,并求此时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线ax﹣by+2=0(a>0,b>0)和函数f(x)=ax+1+1(a>0且a≠1)的图象恒过同一个定点,则当 + 取最小值时,函数f(x)的解析式是

查看答案和解析>>

同步练习册答案