精英家教网 > 高中数学 > 题目详情
5.如图,扇形OAB的半径为1,圆心角为120°,四边形PQRS是扇形的内接矩形,当其面积最大时,求点P的位置,并求此最大面积.

分析 根据题意,设SP中点为C,PQ中点为D,∠COP=θ,表示出四边形SPRS的面积,
再利用三角恒等变换求出它的最大值即可.

解答 解:设SP中点为C,PQ中点为D,如图所示;
设∠COP=θ,则CP=1×sinθ=sinθ,
CO=cosθ,
DQ=CP=sinθ,
又∠DOQ=$\frac{π}{3}$,
∴OD=$\frac{sinθ}{\sqrt{3}}$,
∴CD=OC-OD=cosθ-$\frac{sinθ}{\sqrt{3}}$,
∴S四边形PQRS=CD×SP
=(cosθ-$\frac{sinθ}{\sqrt{3}}$)•2sinθ
=sin2θ-$\frac{{2sin}^{2}θ}{\sqrt{3}}$
=sinθ-$\frac{1-cos2θ}{\sqrt{3}}$
=sin2θ+$\frac{1}{\sqrt{3}}$cos2θ-$\frac{1}{\sqrt{3}}$
=$\frac{2\sqrt{3}}{3}$sin(2θ+$\frac{π}{6}$)-$\frac{\sqrt{3}}{3}$,
当θ=$\frac{π}{6}$时,四边形SPQR取得最大值为
Smax=$\frac{\sqrt{3}}{3}$,
此时点P在弧AB的四等分点处.

点评 本题考查了三角恒等变换以及三角函数的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|x(x-3)<0},B={-1,0,1,2,3},则A∩B=(  )
A.{-1}B.{1,2}C.{0,3}D.{-1,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线y2=4x的焦点为F,P为抛物线上一点,过P作y轴垂线,垂足为M,若|PF|=4,则△PFM的面积是$3\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知sin(540°+α)=-$\frac{4}{5}$,则cos(α-270°)=(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.计算3tan10°+4$\sqrt{3}sin{10°}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等比数列{an}中,${a_2}=4{,^{\;}}{a_5}=32$.
(1)求数列{an}的通项公式;
(2)若${a_3}{,^{\;}}{a_5}$分别为等差数列{bn}的第4项和第16项,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点A(0,-2),椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{3}}{2}$,F是椭圆E的右焦点,直线AF的斜率为$\frac{2\sqrt{3}}{3}$,O是坐标原点.
(1)求E的方程;
(2)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.A、B、C是我方三个炮兵阵地,A在B正东6km,C在B正北偏西30°,相距4km,P为敌炮阵地,某时刻A处发现敌炮阵地的某种信号,由于B、C两地比A距P地远,因此4s后,B、C才同时发现这一信号,此信号的传播速度为1km/s,A若炮击P地,则炮击的方位角是北(南、北)偏东(东、西)30度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$f(x)=\frac{{\sqrt{3}+tanx}}{{1-\sqrt{3}tanx}}$(  )
A.定义域是$\{x|x≠kπ+\frac{π}{6},(k∈Z)\}$B.值域是R
C.在其定义域上是增函数D.最小正周期是π

查看答案和解析>>

同步练习册答案