精英家教网 > 高中数学 > 题目详情
18.如图,正三棱柱ABC-A1B1C1中,侧棱$A{A_1}=\sqrt{3}$,AB=2,D,E分别为棱AC,B1C1的中点,M,N分别为线段AC1和BE的中点.
(1)求证:直线MN∥平面ABC;
(2)求二面角C-BD-E的余弦值.

分析 (Ⅰ)取棱CC1的中点F,连MF,NF,推出MF∥AC,NF∥BC,然后证明MF∥平面ADC,NF∥平面ADC,证明平面MNF∥平面ADC,推出MN∥平面ADC.
(Ⅱ)取线段BC的中点O,连AO,连OE,以O为坐标原点,分别以$\overrightarrow{OB}$,$\overrightarrow{OE}$,$\overrightarrow{OA}$为x,y,z轴正方向建立空间直角坐标系O-xyz.设AB=2,求出相关点的坐标,求出平面ADB的一个法向量,平面BDE的法向量,通过向量的数量积求解二面角B1-AD-B的余弦值.

解答 解:(Ⅰ)取棱CC1的中点F,连MF,NF,则MF∥AC,NF∥BC,
∵MF?平面ADC,AC?平面ADC,
∴MF∥平面ADC,同理NF∥平面ADC
又∵MF∩NF=F,且MF?平面MNF,NF?平面MNF,
∴平面MNF∥平面ADC
又MN?平面MNF,
∴MN∥平面ADC
(Ⅱ)取线段BC的中点O,连AO,则AO⊥BC,连OE,则OE∥BB1
又因为BB1⊥平面ABC,所以OE⊥平面ABC
以O为坐标原点,分别以$\overrightarrow{OB}$,$\overrightarrow{OE}$,$\overrightarrow{OA}$为x,y,z轴正方向建立空间直角坐标系O-xyz.

设AB=2,则$A{A_1}=AO=\sqrt{3}$,各点坐标如下:$O(0,0,0),A(0,0,\sqrt{3}),B(1,0,0)$,C(-1,0,0),$D(-\frac{1}{2},0,\frac{{\sqrt{3}}}{2}),{B_1}(1,\sqrt{3},0)$,$E(0,\sqrt{3},0)$,
∵平面BCD即平面Oxz∴取平面ADB的一个法向量为$\overrightarrow m=(0,1,0)$
设平面BDE的法向量为$\overrightarrow n=({x_0},{y_0},{z_0})$,则   $\overrightarrow n•\overrightarrow{AD}=0$,$\overrightarrow n•\overrightarrow{D{B_1}}=0$
又   $\overrightarrow{DB}=(\frac{3}{2},0,-\frac{{\sqrt{3}}}{2}),\overrightarrow{BE}=(-1,\sqrt{3},0)$,
∴$\left\{\begin{array}{l}\frac{3}{2}{x_0}-\frac{{\sqrt{3}}}{2}{z_0}=0\\-{x_0}+\sqrt{3}{y_0}=0\end{array}\right.$令${x_0}=\sqrt{3}$得平面ADB1的一个法向量为$\overrightarrow n=(\sqrt{3},1,3)$,
∴$cos<\overrightarrow m,\overrightarrow n>=\frac{1}{{1•\sqrt{3+1+9}}}=\frac{{\sqrt{13}}}{13}$
故二面角B1-AD-B的余弦值为$\frac{{\sqrt{13}}}{13}$.

点评 本题考查直线与平面平行的判定定理以及性质定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足的约束条件$\left\{\begin{array}{l}x-2y+2≥0\\ 3x-2y-3≤0\\ x+y-1≥0\end{array}\right.$,表示的平面区域为D,若存在点P(x,y)∈D,使x2+y2≥m成立,则实数m的最大值为(  )
A.$\frac{181}{16}$B.1C.$\frac{9}{13}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的两条渐近线上各取一点P,Q,若以PQ为直径的圆总过原点,则C的离心率为(  )
A.3B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2lnx,g(x)=$\frac{1}{2}$ax2+(2a-1)x
(Ⅰ)设h(x)=f(x)-g(x),讨论函数h(x)的单调区间;
(II )若f(x)-ax=0有两个不同实数解x1,x2,求证:lnx1+lnx2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x2+x-6<0},B={-2,-1,0,1,2},那么A∩B=(  )
A.{-2,-1,0,1}B.{-2,-1,1}C.{-1,1,2}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,曲线C由上半椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0,y≥0)$和部分抛物线${C_2}:y=-{x^2}+1(y≤0)$连接而成,C1与C2的公共点为A,B,其中C1的离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求a,b的值;
(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),是否存在直线l,使得PQ为直径的圆恰好过点A,若存在直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.前不久,我市各街头开始出现“高庶葫芦岛”共享单车,满足了市民的出行需要和节能环保的要求,解决了最后一公里的出行难题,市运营中心为了对共享单车进行更好的监管,随机抽取了20位市民对共享单车的情况进行了问卷调查,并根据其满足度评分值制作了茎叶图如下:

(1)分别计算男性打分的中位数和女性打分的平均数;
(2)从打分在80分以下(不含80分)的市民中抽取3人,求有女性被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设直线x+my+3-2m=0在y轴上的截距是-1,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在一次赠书活动中,将2本不同的小说与2本不同的诗集赠给2名学生,每名学生2本书,则每人分别得到1本小说与1本诗集的概率为(  )
A.$\frac{1}{5}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案