精英家教网 > 高中数学 > 题目详情
7.设直线x+my+3-2m=0在y轴上的截距是-1,则m=1.

分析 令x=0,得y=2-$\frac{3}{m}$=-1,由此能求出结果.

解答 解:∵直线x+my+3-2m=0在y轴上的截距是-1,
∴令x=0,得y=2-$\frac{3}{m}$=-1,
解得m=1.
故答案为:1.

点评 本题考查实数值的求法,涉及到直线方程等基础知识,考查运算求解能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知锐角α满足cosα=$\frac{{\sqrt{5}}}{5}$,则tan2α=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,正三棱柱ABC-A1B1C1中,侧棱$A{A_1}=\sqrt{3}$,AB=2,D,E分别为棱AC,B1C1的中点,M,N分别为线段AC1和BE的中点.
(1)求证:直线MN∥平面ABC;
(2)求二面角C-BD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设等差数列{an}的前n项和为Sn,若S9>0,S10<0,则$\frac{2}{a_1},\frac{2^2}{a_2},\frac{2^3}{a_3},…,\frac{2^9}{a_9}$中最大的是$\frac{2^5}{a_5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知y2=4x抛物线,焦点记为F,过点F作直线l交抛物线于A,B两点,则$|{AF}|-\frac{2}{{|{BF}|}}$的最小值为(  )
A.$2\sqrt{2}-2$B.$\frac{5}{6}$C.$3-\frac{3}{2}\sqrt{2}$D.$2\sqrt{3}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在正方形ABCD中,E,F分别为BC,CD的中点,H为EF的中点,沿AE,EF,FA将正方形折起,使B,C,D重合于点O,构成四面体,则在四面体A-OEF中,下列说法不正确的序号是②.
①AO⊥平面EOF
②AH⊥平面EOF
③AO⊥EF
④AF⊥OE
⑤平面AOE⊥平面AOF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知M(1+cos2x,1),N(1,$\sqrt{3}$sin2x+a)(x∈R,a∈R,a是常数),且y=$\overrightarrow{OM}•\overrightarrow{ON}$(O为坐标原点),点P是直线y=2x上一个动点.
(1)求y关于x的函数关系式y=f(x);
(2)当$x∈[0,\frac{π}{2}]$时,f(x)的最大值为4,求a的值;
(3)若x=$\frac{π}{2}$,a=3,求$\overrightarrow{PM}•\overrightarrow{PN}$的最小值,并求此时$\overrightarrow{OP}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(x2+2x-1)5的展开式中,x3的系数为40(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若等式$\sqrt{3}$sinα+cosα=$\frac{3m+1}{4}$能够成立,则m的取值范围是[-3,$\frac{7}{3}$].

查看答案和解析>>

同步练习册答案