3£®Èçͼ£¬ÇúÏßCÓÉÉϰëÍÖÔ²${C_1}£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£¬y¡Ý0£©$ºÍ²¿·ÖÅ×ÎïÏß${C_2}£ºy=-{x^2}+1£¨y¡Ü0£©$Á¬½Ó¶ø³É£¬C1ÓëC2µÄ¹«¹²µãΪA£¬B£¬ÆäÖÐC1µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£®
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©¹ýµãBµÄÖ±ÏßlÓëC1£¬C2·Ö±ð½»ÓÚµãP£¬Q£¨¾ùÒìÓÚµãA£¬B£©£¬ÊÇ·ñ´æÔÚÖ±Ïßl£¬Ê¹µÃPQΪֱ¾¶µÄԲǡºÃ¹ýµãA£¬Èô´æÔÚÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÔÚC1£¬C2µÄ·½³ÌÖУ¬Áîy=0£¬¿ÉµÃb=1£¬ÇÒA£¨-1£¬0£©£¬B£¨1£¬0£©ÊÇÉϰëÍÖÔ²C1µÄ×óÓÒ¶¥µã£¬ÉèC1µÄ°ë½¹¾àΪc£¬ÓÉ$\frac{c}{a}=\frac{{\sqrt{3}}}{2}$¼°a2-c2=b2-1£¬ÁªÁ¢½âµÃa£®
£¨2£©ÓÉ£¨1£©£¬ÉϰëÍÖÔ²C1µÄ·½³ÌΪ$\frac{y^2}{4}+{x^2}=1£¨y¡Ý0£©$£¬ÓÉÌâÒâÖª£¬Ö±ÏßlÓëxÖá²»ÖØºÏÒ²²»´¹Ö±£¬ÉèÆä·½³ÌΪ
y=k£¨x-1£©£¨k¡Ù0£©£¬´úÈëC1µÄ·½³Ì£¬ÕûÀíµÃ£¨k2+4£©x2-2k2x+k2-4=0£¬ÉèµãPµÄ×ø±êΪ£¨xP£¬yP£©£¬ÓÉÇó¸ù¹«Ê½£¬µÃµãPµÄ×ø±êΪ$£¨\frac{{{k^2}-4}}{{{k^2}+4}}£¬\frac{-8k}{{{k^2}+4}}£©$£¬Í¬Àí£¬ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©£¬k¡Ù0}\\{y=-{x}^{2}+1£¬y¡Ü0}\end{array}\right.$£¬µÃµãQµÄ×ø±êΪ£¨-k-1£¬-k2-2k£©£¬ÒÀÌâÒâ¿ÉÖªAP¡ÍAQ£¬ËùÒÔ$\overrightarrow{A{P_1}}•\overrightarrow{AQ}=0$£¬¼´¿ÉµÃ³ök£®

½â´ð ½â£º£¨1£©ÔÚC1£¬C2µÄ·½³ÌÖУ¬Áîy=0£¬¿ÉµÃb=1£¬ÇÒA£¨-1£¬0£©£¬B£¨1£¬0£©ÊÇÉϰëÍÖÔ²C1µÄ×óÓÒ¶¥µã£¬
ÉèC1µÄ°ë½¹¾àΪc£¬ÓÉ$\frac{c}{a}=\frac{{\sqrt{3}}}{2}$¼°a2-c2=b2-1£¬
¿ÉµÃa=2£¬ËùÒÔa=2£¬b=1£®
£¨2£©ÓÉ£¨1£©£¬ÉϰëÍÖÔ²C1µÄ·½³ÌΪ$\frac{y^2}{4}+{x^2}=1£¨y¡Ý0£©$£¬
ÓÉÌâÒâÖª£¬Ö±ÏßlÓëxÖá²»ÖØºÏÒ²²»´¹Ö±£¬ÉèÆä·½³ÌΪy=k£¨x-1£©£¨k¡Ù0£©£¬
´úÈëC1µÄ·½³Ì£¬ÕûÀíµÃ£¨k2+4£©x2-2k2x+k2-4=0£¬
ÉèµãPµÄ×ø±êΪ£¨xP£¬yP£©£¬
ÒòΪֱÏßl¹ýµãB£¬ËùÒÔx=1ÊÇ·½³ÌµÄÒ»¸ö¸ù£¬
ÓÉÇó¸ù¹«Ê½£¬µÃ${x_P}=\frac{{{k^2}-4}}{{{k^2}+4}}£¬{y_P}=\frac{-8k}{{{k^2}+4}}$£¬ËùÒÔµãPµÄ×ø±êΪ$£¨\frac{{{k^2}-4}}{{{k^2}+4}}£¬\frac{-8k}{{{k^2}+4}}£©$£¬
ͬÀí£¬ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©£¬k¡Ù0}\\{y=-{x}^{2}+1£¬y¡Ü0}\end{array}\right.$£¬µÃµãQµÄ×ø±êΪ£¨-k-1£¬-k2-2k£©£¬
ËùÒÔ$\overrightarrow{AP}=£¨\frac{{2{k^2}}}{{{k^2}+4}}£¬\frac{{-8{k^2}}}{{{k^2}+4}}£©£¬\overrightarrow{AQ}=£¨-k£¬-{k^2}+2k£©$£¬
ÒÀÌâÒâ¿ÉÖªAP¡ÍAQ£¬ËùÒÔ$\overrightarrow{A{P_1}}•\overrightarrow{AQ}=0$£¬¼´$\frac{{2{k^2}}}{{{k^2}+4}}•£¨-k£©+\frac{{-8{k^2}}}{{{k^2}+4}}•£¨-{k^2}-2k£©=0$£¬
¼´$\frac{{-2{k^2}}}{{{k^2}+4}}[k-4£¨k+2£©]=0$£¬
ÒòΪk¡Ù0£¬ËùÒÔk-4£¨k+2£©=0£¬½âµÃ$k=-\frac{8}{3}$£¬
¾­¼ìÑ飬$k=-\frac{8}{3}$·ûºÏÌâÒ⣬¹ÊÖ±ÏßlµÄ·½³ÌΪ$y=-\frac{8}{3}£¨x-1£©$£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÍÖÔ²Å×ÎïÏßÏཻÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢Ô²µÄÐÔÖÊ¡¢ÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÃüÌâp£º¹ØÓÚxµÄ·½³Ìx2-ax+4=0ÓÐʵ¸ù£»ÃüÌâq£º¹ØÓÚxµÄº¯Êýy=2x2+ax+4ÔÚ[3£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬Èôp¡ÄqÊÇÕæÃüÌ⣬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[-12£¬-4]¡È[4£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÉèiΪÐéÊýÖе¥Î»£¬Èô¸´Êýz=$\frac{a}{1-2i}$+i£¨a¡ÊR£©µÄʵ²¿ÓëÐ鲿»¥ÎªÏà·´Êý£¬Ôòa=£¨¡¡¡¡£©
A£®-$\frac{5}{3}$B£®-$\frac{1}{3}$C£®-1D£®-5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èôm=${¡Ò}_{-1}^{1}$£¨6x2+tanx£©dx£¬ÇÒ£¨2x+$\sqrt{3}$£©m=a0+a1x+a2x2+¡­+amxm£¬Ôò£¨a0+a2+¡­+am£©2-£¨a1+..+am-1£©2µÄֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÕýÈýÀâÖùABC-A1B1C1ÖУ¬²àÀâ$A{A_1}=\sqrt{3}$£¬AB=2£¬D£¬E·Ö±ðΪÀâAC£¬B1C1µÄÖе㣬M£¬N·Ö±ðΪÏß¶ÎAC1ºÍBEµÄÖе㣮
£¨1£©ÇóÖ¤£ºÖ±ÏßMN¡ÎÆ½ÃæABC£»
£¨2£©Çó¶þÃæ½ÇC-BD-EµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èôx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x+y-5¡Ü0\\ 2x-y-1¡Ý0\\ x-2y+1¡Ü0\end{array}\right.$£¬Ôò2x-3yµÄ×îСֵΪ-5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÉèµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÈôS9£¾0£¬S10£¼0£¬Ôò$\frac{2}{a_1}£¬\frac{2^2}{a_2}£¬\frac{2^3}{a_3}£¬¡­£¬\frac{2^9}{a_9}$ÖÐ×î´óµÄÊÇ$\frac{2^5}{a_5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èçͼ£¬ÔÚÕý·½ÐÎABCDÖУ¬E£¬F·Ö±ðΪBC£¬CDµÄÖе㣬HΪEFµÄÖÐµã£¬ÑØAE£¬EF£¬FA½«Õý·½ÐÎÕÛÆð£¬Ê¹B£¬C£¬DÖØºÏÓÚµãO£¬¹¹³ÉËÄÃæÌ壬ÔòÔÚËÄÃæÌåA-OEFÖУ¬ÏÂÁÐ˵·¨²»ÕýÈ·µÄÐòºÅÊÇ¢Ú£®
¢ÙAO¡ÍÆ½ÃæEOF
¢ÚAH¡ÍÆ½ÃæEOF
¢ÛAO¡ÍEF
¢ÜAF¡ÍOE
¢ÝÆ½ÃæAOE¡ÍÆ½ÃæAOF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=ax-x2-lnx´æÔÚ¼«Öµ£¬ÈôÕâЩ¼«ÖµµÄºÍ´óÓÚ5+ln2£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨-¡Þ£¬4£©B£®£¨4£¬+¡Þ£©C£®£¨-¡Þ£¬2£©D£®£¨2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸