·ÖÎö £¨1£©ÔÚC1£¬C2µÄ·½³ÌÖУ¬Áîy=0£¬¿ÉµÃb=1£¬ÇÒA£¨-1£¬0£©£¬B£¨1£¬0£©ÊÇÉϰëÍÖÔ²C1µÄ×óÓÒ¶¥µã£¬ÉèC1µÄ°ë½¹¾àΪc£¬ÓÉ$\frac{c}{a}=\frac{{\sqrt{3}}}{2}$¼°a2-c2=b2-1£¬ÁªÁ¢½âµÃa£®
£¨2£©ÓÉ£¨1£©£¬ÉϰëÍÖÔ²C1µÄ·½³ÌΪ$\frac{y^2}{4}+{x^2}=1£¨y¡Ý0£©$£¬ÓÉÌâÒâÖª£¬Ö±ÏßlÓëxÖá²»ÖØºÏÒ²²»´¹Ö±£¬ÉèÆä·½³ÌΪ
y=k£¨x-1£©£¨k¡Ù0£©£¬´úÈëC1µÄ·½³Ì£¬ÕûÀíµÃ£¨k2+4£©x2-2k2x+k2-4=0£¬ÉèµãPµÄ×ø±êΪ£¨xP£¬yP£©£¬ÓÉÇó¸ù¹«Ê½£¬µÃµãPµÄ×ø±êΪ$£¨\frac{{{k^2}-4}}{{{k^2}+4}}£¬\frac{-8k}{{{k^2}+4}}£©$£¬Í¬Àí£¬ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©£¬k¡Ù0}\\{y=-{x}^{2}+1£¬y¡Ü0}\end{array}\right.$£¬µÃµãQµÄ×ø±êΪ£¨-k-1£¬-k2-2k£©£¬ÒÀÌâÒâ¿ÉÖªAP¡ÍAQ£¬ËùÒÔ$\overrightarrow{A{P_1}}•\overrightarrow{AQ}=0$£¬¼´¿ÉµÃ³ök£®
½â´ð ½â£º£¨1£©ÔÚC1£¬C2µÄ·½³ÌÖУ¬Áîy=0£¬¿ÉµÃb=1£¬ÇÒA£¨-1£¬0£©£¬B£¨1£¬0£©ÊÇÉϰëÍÖÔ²C1µÄ×óÓÒ¶¥µã£¬
ÉèC1µÄ°ë½¹¾àΪc£¬ÓÉ$\frac{c}{a}=\frac{{\sqrt{3}}}{2}$¼°a2-c2=b2-1£¬
¿ÉµÃa=2£¬ËùÒÔa=2£¬b=1£®
£¨2£©ÓÉ£¨1£©£¬ÉϰëÍÖÔ²C1µÄ·½³ÌΪ$\frac{y^2}{4}+{x^2}=1£¨y¡Ý0£©$£¬
ÓÉÌâÒâÖª£¬Ö±ÏßlÓëxÖá²»ÖØºÏÒ²²»´¹Ö±£¬ÉèÆä·½³ÌΪy=k£¨x-1£©£¨k¡Ù0£©£¬
´úÈëC1µÄ·½³Ì£¬ÕûÀíµÃ£¨k2+4£©x2-2k2x+k2-4=0£¬
ÉèµãPµÄ×ø±êΪ£¨xP£¬yP£©£¬
ÒòΪֱÏßl¹ýµãB£¬ËùÒÔx=1ÊÇ·½³ÌµÄÒ»¸ö¸ù£¬
ÓÉÇó¸ù¹«Ê½£¬µÃ${x_P}=\frac{{{k^2}-4}}{{{k^2}+4}}£¬{y_P}=\frac{-8k}{{{k^2}+4}}$£¬ËùÒÔµãPµÄ×ø±êΪ$£¨\frac{{{k^2}-4}}{{{k^2}+4}}£¬\frac{-8k}{{{k^2}+4}}£©$£¬
ͬÀí£¬ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©£¬k¡Ù0}\\{y=-{x}^{2}+1£¬y¡Ü0}\end{array}\right.$£¬µÃµãQµÄ×ø±êΪ£¨-k-1£¬-k2-2k£©£¬
ËùÒÔ$\overrightarrow{AP}=£¨\frac{{2{k^2}}}{{{k^2}+4}}£¬\frac{{-8{k^2}}}{{{k^2}+4}}£©£¬\overrightarrow{AQ}=£¨-k£¬-{k^2}+2k£©$£¬
ÒÀÌâÒâ¿ÉÖªAP¡ÍAQ£¬ËùÒÔ$\overrightarrow{A{P_1}}•\overrightarrow{AQ}=0$£¬¼´$\frac{{2{k^2}}}{{{k^2}+4}}•£¨-k£©+\frac{{-8{k^2}}}{{{k^2}+4}}•£¨-{k^2}-2k£©=0$£¬
¼´$\frac{{-2{k^2}}}{{{k^2}+4}}[k-4£¨k+2£©]=0$£¬
ÒòΪk¡Ù0£¬ËùÒÔk-4£¨k+2£©=0£¬½âµÃ$k=-\frac{8}{3}$£¬
¾¼ìÑ飬$k=-\frac{8}{3}$·ûºÏÌâÒ⣬¹ÊÖ±ÏßlµÄ·½³ÌΪ$y=-\frac{8}{3}£¨x-1£©$£®
µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÍÖÔ²Å×ÎïÏßÏཻÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢Ô²µÄÐÔÖÊ¡¢ÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -$\frac{5}{3}$ | B£® | -$\frac{1}{3}$ | C£® | -1 | D£® | -5 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬4£© | B£® | £¨4£¬+¡Þ£© | C£® | £¨-¡Þ£¬2£© | D£® | £¨2£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com