精英家教网 > 高中数学 > 题目详情
13.已知命题p:关于x的方程x2-ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数,若p∧q是真命题,则实数a的取值范围是[-12,-4]∪[4,+∞).

分析 根据条件求出命题p,q为真命题的等价条件,结合复合命题真假关系进行求解即可.

解答 解:命题p:关于x的方程x2-ax+4=0有实根,则△=a2-16≥0,解得a≥4,或a≤-4.
命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数,∴$-\frac{a}{4}≤3$,解得a≥-12.
若p∧q是真命题,
则p,q同时为真命题,
则$\left\{\begin{array}{l}{a≥4或a≤-4}\\{a≥-12}\end{array}\right.$,
即-12≤a≤-4或a≥4,
故答案为:[-12,-4]∪[4,+∞)

点评 本题考查了复合命题真假的判定方法、函数的性质、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若函数$f(x)=\left\{\begin{array}{l}{3^x}-a,x≤1\\ ln({x-1}),x>1\end{array}\right.$有两个不同的零点,则实数a的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为PC的中点,E为AD的中点,PA=AC=2,BC=1.
(1)求证:AD⊥平面PBC;
(2)求PE与平面ABD所成角的正弦值;
(3)设点F在线段PB上,且$\frac{PF}{PB}$=λ,EF∥平面ABC,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某人第一天8:00从A地开车出发,6小时后到达B地,第二天8:00从B地出发,沿原路6小时后返回A地.则在此过程中,以下说法中
①一定存在某个位置E,两天经过此地的时刻相同
②一定存在某个时刻,两天中在此刻的速度相同
③一定存在某一段路程EF(不含A、B),两天在此段内的平均速度相同.(以上速度不考虑方向)
正确说法的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足的约束条件$\left\{\begin{array}{l}x-2y+2≥0\\ 3x-2y-3≤0\\ x+y-1≥0\end{array}\right.$,表示的平面区域为D,若存在点P(x,y)∈D,使x2+y2≥m成立,则实数m的最大值为(  )
A.$\frac{181}{16}$B.1C.$\frac{9}{13}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.有5件不同的商品,其中2件次品,3件正品,从中取出2件,至少有1件次品的概率为(  )
A.$\frac{4}{5}$B.$\frac{7}{10}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在斜三棱柱ABC-A1B1C1中,顶点A1在底面ABC内的射影恰为线段AB的中点,AA1=2,△ABC为边长为2的正三角形,N为△ABC的中心,$\overrightarrow{{C}_{1}M}$=2$\overrightarrow{MB}$.
(1)求证:MN∥平面A1B1BA;
(2)求三棱锥B1-A1AM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在区间$[{-\frac{5}{6},\frac{13}{6}}]$上随机取一个数x,则事件“$-1≤{log_{\frac{1}{3}}}({x+1})≤1$”不发生的概率为(  )
A.$\frac{8}{9}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,曲线C由上半椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0,y≥0)$和部分抛物线${C_2}:y=-{x^2}+1(y≤0)$连接而成,C1与C2的公共点为A,B,其中C1的离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求a,b的值;
(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),是否存在直线l,使得PQ为直径的圆恰好过点A,若存在直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案