精英家教网 > 高中数学 > 题目详情
7.已知f(x)=x2+3xf′(2),则1+f′(1)=-3.

分析 先求出f′(x)=2x+3f'(2),令x=2,即可求出f′(1 ).

解答 解:因为f(x)=x2+3xf′(2),
所以f′(x)=2x+3f'(2),
令x=2,得f′(2)=4+3f'(2),
所以f′(2)=-2,
所以f′(1)=2+3f'(2)=-4,
所以1+f′(1)=-3
故答案为:-3.

点评 本题考查函数与导数,求导公式的应用及函数值求解.本题求出f′(x ) 是关键步骤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在横线上填上正确的不等号:$\frac{1}{{\sqrt{5}-2}}$<$\frac{1}{{\sqrt{6}-\sqrt{5}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点A($\frac{π}{6}$,$\frac{\sqrt{3}}{2}$),B($\frac{π}{4}$,1),C($\frac{π}{2}$,0),若这三个点中有且仅有两个点在函数f(x)=sinωx的图象上,则正数ω的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若直线l:ax+by+4=0(a>0,b>0)始终平分圆x2+y2+8x+2y+1=0,则ab的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知锐角三角形△ABC的面积为$\frac{3}{2}$,且b=2,c=$\sqrt{3}$,则∠A=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合M={x|x2-x-2<0},N={x|a<x<b,x∈R,a,b∈R}.
(1)求集合M;
(2)若M?N,求a的最小值;
(3)若M∩N=M,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1-|x|}{1+|x|}+a•\frac{1+|x|}{1-|x|}$(a∈R).
(Ⅰ)当a=-1时,判断f(x)在区间(-1,1)上的单调性,并说明理由;
(Ⅱ)若a>0时,对于区间$[-\frac{1}{2},\frac{1}{2}]$上任意取的三个实数m,n,p,都存在以f(m),f(n),f(p)为边长的三角形,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式x(1-3x)>0的解集是(  )
A.(-∞,$\frac{1}{3}$)B.(-∞,0)∪(0,$\frac{1}{3}$)C.($\frac{1}{3}$,+∞)D.(0,$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,圆C的极坐标方程为ρ=4,经过点P(1,2)的直线l的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t为参数).
(1)写出圆C的标准方程和直线l的普通方程;
(2)设直线l与圆C相交于A,B两点,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

同步练习册答案