精英家教网 > 高中数学 > 题目详情
17.在平面直角坐标系xOy中,圆C的极坐标方程为ρ=4,经过点P(1,2)的直线l的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t为参数).
(1)写出圆C的标准方程和直线l的普通方程;
(2)设直线l与圆C相交于A,B两点,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

分析 (1)利用ρ2=x2+y2=4可得⊙C的标准方程4,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t为参数),消去t可得直线l的普通方程.
(2)直线l的标准参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$(t为参数),代入⊙C的方程可得:t2+(2+$\sqrt{3}$)t+1=0,利用根与系数的关系及其参数的意义可得$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=-$\frac{{t}_{1}+{t}_{2}}{{t}_{1}{t}_{2}}$.

解答 解:(1)由ρ=4可得⊙C的标准方程:x2+y2=4,
直线l的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t为参数),消去t可得:直线l的普通方程:$x-\sqrt{3}y$+2$\sqrt{3}$-1=0.
(2)直线l的标准参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$(t为参数),代入⊙C的方程可得:t2+(2+$\sqrt{3}$)t+1=0,
∴t1+t2=-(2+$\sqrt{3}$),t1t2=1.
∴$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=-$\frac{{t}_{1}+{t}_{2}}{{t}_{1}{t}_{2}}$=$2+\sqrt{3}$.

点评 本题考查了极坐标化为直角坐标方程、直线与圆的位置关系、直线参数方程的应用,考查了数形结合方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知f(x)=x2+3xf′(2),则1+f′(1)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱台DEF-ABC中,已知底面ABC是以AB为斜边的直角三角形,FC⊥底面ABC,AB=2DE,G,H分别为AC,BC的中点.
(1)求证:平面ABED∥平面GHF;
(2)若BC=CF=$\frac{1}{2}$AB=1,求棱锥F-ABHG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx+ax2+1的图象在点(1,f(1))处切线的斜率为3.
(1)求实数a的值;
(2)证明:存在正实数λ,使得|$\frac{1-x}{f(x)-lnx}$|≤λ恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.定义在R上的函数f(x)满足对任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒为0,
(1)求f(1)和f(-1)的值;
(2)试判断f(x)的奇偶性,并加以证明;
(3)若x≥0时f(x)为增函数,求满足不等式f(x+1)-f(2-x)≤0的x取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在极坐标系中,圆C:ρ=2与抛物线ρ=$\frac{1}{1-cosθ}$交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数f(x)=sin4x-$\sqrt{3}$cos4x的图象上所有点的横坐标伸长到原来的2倍(纵坐标保持不变),再向左平移$\frac{π}{12}$个单位长度,得到函数g(x)的图象,则下列说法不正确的是(  )
A.g(x)的最大值为2B.g(x)在[0,$\frac{π}{2}$]上是增函数
C.函数g(x)的图象关于直线x=$\frac{π}{3}$对称D.函数g(x)的图象关于点($\frac{π}{12}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+ax+1.
(1)解不等式f(x)>0.
(2)若f(x)在x∈[-3,1)上恒有f(x)≥-3成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求值:$\frac{2sin50°+sin80°(1+tan60°tan10°)}{\sqrt{1+sin100°}}$.

查看答案和解析>>

同步练习册答案