精英家教网 > 高中数学 > 题目详情
7.求值:$\frac{2sin50°+sin80°(1+tan60°tan10°)}{\sqrt{1+sin100°}}$.

分析 利用切化弦以及两角和的余弦函数化简分子,二倍角的正弦函数化简分母,即可求出表达式的值.

解答 解:$\frac{2sin50°+sin80°(1+tan60°tan10°)}{\sqrt{1+sin100°}}$
=$\frac{2sin50°+sin80°\frac{cos60°cos10°+sin60°sin10°}{cos60°cos10°}}{\sqrt{(sin50°+cos50°)^{2}}}$
=$\frac{2sin50°+2cos50°}{sin50°+cos50°}$
=2.

点评 本题考查二倍角公式以及同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,圆C的极坐标方程为ρ=4,经过点P(1,2)的直线l的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t为参数).
(1)写出圆C的标准方程和直线l的普通方程;
(2)设直线l与圆C相交于A,B两点,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.棱长为1的正四面体ABCD中,E为棱AB上一点(不含A,B两点),点E到平面ACD和平面BCD的距离分别为a,b,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题p:B+C=2A,且b+c=2a;命题q:△ABC是正三角形.命题p是命题q的(  )
A.充要条件B.充分条件但不是必要条件
C.必要条件但不是充分条件D.既不是充分条件又不是必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=asin2x+bcos2x(a,b∈R)的图象过点($\frac{π}{12}$,2),且点(-$\frac{π}{6}$,0)是其对称中心,将函数f(x)的图象向右平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,则函数g(x)的解析式为(  )
A.g(x)=2sin2xB.g(x)=2cos2xC.g(x)=2sin(2x+$\frac{π}{6}$)D.g(x)=2sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若$\frac{1+tanα}{1-tanα}$=2,则tan2α=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.y=3-sinx的值域为[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=sinx+|sinx|,则f(x)为(  )
A.周期函数,最小正周期为$\frac{2π}{3}$B.周期函数,最小正周期为$\frac{π}{3}$
C.周期函数,最小正周期为2πD.非周期函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(2x+3y)8的展开式中共有9项.

查看答案和解析>>

同步练习册答案