精英家教网 > 高中数学 > 题目详情
19.y=3-sinx的值域为[2,4].

分析 根据正弦函数的值域判断y=3-sinx的值域.

解答 解:∵-1≤sinx≤1,
∴2≤3-x≤4.
故答案为[2,4].

点评 本题考查了正弦函数的图象与性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.将函数f(x)=sin4x-$\sqrt{3}$cos4x的图象上所有点的横坐标伸长到原来的2倍(纵坐标保持不变),再向左平移$\frac{π}{12}$个单位长度,得到函数g(x)的图象,则下列说法不正确的是(  )
A.g(x)的最大值为2B.g(x)在[0,$\frac{π}{2}$]上是增函数
C.函数g(x)的图象关于直线x=$\frac{π}{3}$对称D.函数g(x)的图象关于点($\frac{π}{12}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex-x,g(x)=ax2+1,其中e为自然对数的底数.
(1)若函数F(x)=f(x)-g(x)的导函数F′(x)在[0,+∞)上是增函数,求实数a的最大值;
(2)求证:f(1)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{n}$)>$\frac{n(2n+3)}{2(n+1)}$,n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求值:$\frac{2sin50°+sin80°(1+tan60°tan10°)}{\sqrt{1+sin100°}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知首项都是1的两个数列{an},{bn}(bn≠0.n∈N*)满足anbn+1-an+1bn+2bn+1bn=0.令cn=$\frac{{a}_{n}}{{b}_{n}}$,求证数列{cn}是等差数列,并求{cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在[0,π]内任意取一个数x,使得sinx+$\sqrt{3}$cosx≥1的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=x+$\frac{cosx}{x}$的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.根据a的不同取值,求f(x)=$\frac{1}{{x}^{2}+ax+1}$(a∈R)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某种放射性物质,每经过一年平均减少6.2%,求5年后1克这样的物质还剩0.726克?(精确到0.001)

查看答案和解析>>

同步练习册答案