精英家教网 > 高中数学 > 题目详情
14.已知首项都是1的两个数列{an},{bn}(bn≠0.n∈N*)满足anbn+1-an+1bn+2bn+1bn=0.令cn=$\frac{{a}_{n}}{{b}_{n}}$,求证数列{cn}是等差数列,并求{cn}的通项公式.

分析 首项都是1的两个数列{an},{bn}(bn≠0.n∈N*)满足anbn+1-an+1bn+2bn+1bn=0.$\frac{{a}_{n}}{{b}_{n}}$$-\frac{{a}_{n+1}}{{b}_{n+1}}$+2=0,又cn=$\frac{{a}_{n}}{{b}_{n}}$,可得cn+1-cn=2,即可证明.

解答 证明:∵首项都是1的两个数列{an},{bn}(bn≠0.n∈N*)满足anbn+1-an+1bn+2bn+1bn=0.
∴$\frac{{a}_{n}}{{b}_{n}}$$-\frac{{a}_{n+1}}{{b}_{n+1}}$+2=0,又cn=$\frac{{a}_{n}}{{b}_{n}}$,
∴cn+1-cn=2,c1=$\frac{{a}_{1}}{{b}_{1}}$=1.
∴数列{cn}是等差数列,首项为1,公差为2.
∴cn=1+2(n-1)=2n-1.

点评 本题考查了等差数列定义及其通项公式,考查了变形能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.若曲线ρ2-2aρcosθ-2aρsinθ+2a2-4=0上有且仅有两个点到原点的距离为2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=$\sqrt{2}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{12}$对称,且当x1,x2∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),x1≠x2时,f(x1)=f(x2),则f(x1+x2)等于(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=asin2x+bcos2x(a,b∈R)的图象过点($\frac{π}{12}$,2),且点(-$\frac{π}{6}$,0)是其对称中心,将函数f(x)的图象向右平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,则函数g(x)的解析式为(  )
A.g(x)=2sin2xB.g(x)=2cos2xC.g(x)=2sin(2x+$\frac{π}{6}$)D.g(x)=2sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.y=$\frac{1}{2}$sin(6x+1)的最大值(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.6D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.y=3-sinx的值域为[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据下面数列的前几项,写出数列的一个通项公式.
(1)1,1,$\frac{5}{7}$,$\frac{7}{15}$,$\frac{9}{31}$,…
(2)2,22,222,2222,…;
(3)3,0,-3,0,3,…

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知(x+2)7=a0+a1(x-1)+a2(x-1)2+…+a7(x-1)7
(1)求a5
(2)求(x+2)7展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.运行图所示的程序,则输出的结果为(  )
A.23B.21C.19D.17

查看答案和解析>>

同步练习册答案