精英家教网 > 高中数学 > 题目详情
1.下列命题正确的是(  )
A.在△ABC中,角A,B,C的对边分别是a,b,c,则a>b是cos A<cos B的充要条件
B.命题p:对任意的x∈R,x2+x+1>0,则¬p:对任意的x∈R,x2+x+1≤0
C.已知p:$\frac{1}{x+1}$>0,则¬p:$\frac{1}{x+1}$≤0
D.存在实数x∈R,使sin x+cos x=$\frac{π}{2}$成立

分析 A.根据大角对大边以及充分条件和必要条件的定义进行判断,
B.根据全称命题的否定是特称命题进行判断,
C.根据命题的否定的定义进行判断,
D.根据三角函数的有界性进行判断.

解答 解:A.在△ABC中,若cos A<cos B等价为A>B,则等价为a>b,则a>b是cos A<cos B的充要条件,故A正确,
B.命题的否定是:?x∈R,x2+x+1≤0,故B错误,
C.p::$\frac{1}{x+1}$>0,则¬p:$\frac{1}{x+1}$≤0或x+1=0,故C错误,
D.∵sin x+cos x=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],而$\frac{π}{2}$>$\sqrt{2}$,
∴不存在实数x∈R,使sin x+cos x=$\frac{π}{2}$成立,故D错误,
故选:C

点评 本题主要考查命题的真假判断,涉及充分条件和必要条件的判断,含有量词的命题的否定以及命题的否定,涉及的知识点较多,综合性较强,但难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.直线过点P(-3,1),且与x轴,y轴分别交于A,B两点.
(Ⅰ)若点P恰为线段AB的中点,求直线l的方程;
(Ⅱ)若$\overrightarrow{AP}$=$2\overrightarrow{PB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)={x^2}-1,g(x)=\left\{\begin{array}{l}x-1,x>0\\ 2-x,x<0\end{array}\right.$
(1)求f(g(2))、g(f(2))、g(g(g(-2)))的值
(2)求f(g(x))、g(f(x))的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在数列{an}中,a1=1,a2=5,an+2=an+1-an,则a2015=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知定义在[-1,1]的函数满足f(-x)=-f(x),当a,b∈[-1,0)时,总有$\frac{f(a)-f(b)}{a-b}$>0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是$-\frac{1}{2}≤m≤0$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合S={x|log0.5(x+2)>log0.2549},P={x|a+1<x<2a+15}.
(1)求集合S;
(2)若S⊆P,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,以O为原点,Ox轴为极轴,单位长度不变,建立极坐标系,直线l的极坐标方程为:ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,曲线C的参数方程为:$\left\{\begin{array}{l}{x=2(sint+cost)}\\{y=4(1+sin2t)}\end{array}\right.(t为参数)$
(1)写出直线l和曲线C的普通方程;
(2)若直线l和曲线C相交于A,B两点,定点P(-1,2),求线段|AB|和|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x+x2
(1)求证:f(x)是周期函数;
(2)当x∈[2,4],求f(x)的解析式;
(3)计算:f(0)+f(1)+f(2)+…+f(2008).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知Sn是等差数列{an}的前n项和,若a5=5a3,则$\frac{{S}_{9}}{{S}_{5}}$=(  )
A.$\frac{18}{5}$B.5C.9D.$\frac{9}{25}$

查看答案和解析>>

同步练习册答案