精英家教网 > 高中数学 > 题目详情
16.已知定义在[-1,1]的函数满足f(-x)=-f(x),当a,b∈[-1,0)时,总有$\frac{f(a)-f(b)}{a-b}$>0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是$-\frac{1}{2}≤m≤0$.

分析 先根据条件得到函数的奇偶性,再结合条件求出函数在[-1,1]上的单调性,最后根据单调性建立关系式求解即可.

解答 解:∵函数f(x)满足f(-x)=-f(x),
∴函数f(x)是奇函数.
又∵当a,b∈[-1,0)时,总有$\frac{f(a)-f(b)}{a-b}$>0,
∴函数f(x)在[-1,0)上单调递增函数
根据奇函数的性质可知函数f(x)在[-1,1]上单调递增函数
∵f(m+1)>f(2m),
∴-1≤2m<m+1≤1,
∴$-\frac{1}{2}≤m≤0$.
故答案为$-\frac{1}{2}≤m≤0$.

点评 本题主要考查了函数的单调性的应用,以及函数奇偶性的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,BC⊥PB,△BCD为等边三角形,PA=BD=$\sqrt{3}$,AB=AD,E为PC的中点.
(1)求证:BC⊥AB;
(2)求AB的长;
(3)求平面BDE与平面ABP所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列各组中的两个函数是相等函数的为(  )
A.y=x2-2x-1与y=t2-2t-1B.y=1与 $y=\frac{x}{x}$
C.y=6x与$y=6\sqrt{x^2}$D.$y={(\sqrt{x})^2}$与$y=\root{3}{x^3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列选项中叙述错误的是(  )
A.若“p∧q”为假命题,则“p∨q”为真命题
B.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”
C.命题“若x=0,则x2-x=0”的逆否命题为真命题
D.若命题p:?n∈N,n2>2n,则?p:?n∈N,n2≤2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+$\frac{a}{x}$(a∈R)
(1)讨论函数f(x)的单调性;
(2)当a=2时,求函数f(x)在区间[1,e]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题正确的是(  )
A.在△ABC中,角A,B,C的对边分别是a,b,c,则a>b是cos A<cos B的充要条件
B.命题p:对任意的x∈R,x2+x+1>0,则¬p:对任意的x∈R,x2+x+1≤0
C.已知p:$\frac{1}{x+1}$>0,则¬p:$\frac{1}{x+1}$≤0
D.存在实数x∈R,使sin x+cos x=$\frac{π}{2}$成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=$\sqrt{5}$,且点M和N分别为B1C和D1D的中点.
(I)求证:MN∥平面ABCD;
(II)求二面角D1-AC-B1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆O:x2+y2=4与x轴相交于A,B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)求经过直线l1:2x+3y-5=0与l2:7x+15y+1=0的交点,且平行于直线x+2y-3=0的直线方程;
(2)求与直线3x+4y-7=0垂直,且与原点的距离为6的直线方程.

查看答案和解析>>

同步练习册答案