精英家教网 > 高中数学 > 题目详情
5.已知圆O:x2+y2=4与x轴相交于A,B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围.

分析 根据圆内的动点P使|PA|、|PO|、|PB|成等比数列,列出方程,再根据点P在圆内求出取值范围.

解答 解:不妨设A(x1,0),B(x2,0),x1<x2.由x2=4即得A(-2,0),B(2,0).
设P(x,y),
由|PA|,|PO|,|PB|成等比数列,得$\sqrt{(x+2)^{2}+{y}^{2}}•\sqrt{(x-2)^{2}+{y}^{2}}={x}^{2}+{y}^{2}$,
两边平方,可得(x2+y2+4)2-16x2=(x2+y22
化简整理可得,x2-y2=2.
$\overrightarrow{PA}$•$\overrightarrow{PB}$=(-2-x,-y)•(2-x,-y)=x2-4+y2=2(y2-1).
由于点P在圆O内,故$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}<4}\\{{x}^{2}-{y}^{2}=2}\end{array}\right.$,
由此得y2<1.
所以$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围为[-2,0).

点评 此题主要考查圆的标准方程,以及圆与直线交点问题,属于综合性试题,有一定的计算量,难易中等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在边长为4的菱形ABCD中,∠BAD=60°,E为CD的中点,则$\overrightarrow{AE}$•$\overrightarrow{BD}$=(  )
A.4B.8C.-6D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知定义在[-1,1]的函数满足f(-x)=-f(x),当a,b∈[-1,0)时,总有$\frac{f(a)-f(b)}{a-b}$>0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是$-\frac{1}{2}≤m≤0$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,以O为原点,Ox轴为极轴,单位长度不变,建立极坐标系,直线l的极坐标方程为:ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,曲线C的参数方程为:$\left\{\begin{array}{l}{x=2(sint+cost)}\\{y=4(1+sin2t)}\end{array}\right.(t为参数)$
(1)写出直线l和曲线C的普通方程;
(2)若直线l和曲线C相交于A,B两点,定点P(-1,2),求线段|AB|和|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆C:(x-1)2+(y-1)2=9,直线l:y=kx+3与圆C相交于A、B两点,M为弦AB上一动点,以M为圆心,1为半径的圆与圆C总有公共点,则实数k的取值范围(  )
A.(-∞,0]B.[$\frac{4}{3}$,+∞)C.[0,$\frac{4}{3}$]D.(0,$\frac{4}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x+x2
(1)求证:f(x)是周期函数;
(2)当x∈[2,4],求f(x)的解析式;
(3)计算:f(0)+f(1)+f(2)+…+f(2008).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤1}\\{lo{g}_{\frac{1}{2}}{x}^{2},x>1}\end{array}\right.$,则f(4)=(  )
A.5B.0C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某外商到一开防区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜投入50万美元.
(1)若扣除投资及各种经费,则从第几年开始获取纯利润?
(2)试计算第几年平均获取纯利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数y=x2+2(a-1)x+2在区间(-∞,4]上单调递减,则实数a的取值范围是a≤-3.

查看答案和解析>>

同步练习册答案