精英家教网 > 高中数学 > 题目详情
20.已知圆C:(x-1)2+(y-1)2=9,直线l:y=kx+3与圆C相交于A、B两点,M为弦AB上一动点,以M为圆心,1为半径的圆与圆C总有公共点,则实数k的取值范围(  )
A.(-∞,0]B.[$\frac{4}{3}$,+∞)C.[0,$\frac{4}{3}$]D.(0,$\frac{4}{3}$]

分析 M为圆心,1为半径的圆与圆C总有公共点,只要求点M在弦的中点上满足,其它的点都满足,即圆心C到直线的距离+1≥3,从而可得实数k的取值范围.

解答 解:以M为圆心,1为半径的圆与圆C总有公共点,只要求点M在弦的中点上满足,其它的点都满足,
即圆心C到直线的距离d+1≥3,
所以$\frac{|k+2|}{\sqrt{{k}^{2}+1}}$+1≥3,
所以0$≤k≤\frac{4}{3}$,
故选:C.

点评 本题考查实数k的取值范围,考查直线与圆,圆与圆的位置关系,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$+log2x.
(1)求f(2),f($\frac{1}{2}$),f(4),f($\frac{1}{4}$)的值,并计算f(2)+f($\frac{1}{2}$),f(4)+f($\frac{1}{4}$);
(2)求f(1)+f(2)+f(3)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…f($\frac{1}{2016}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+$\frac{a}{x}$(a∈R)
(1)讨论函数f(x)的单调性;
(2)当a=2时,求函数f(x)在区间[1,e]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=$\sqrt{5}$,且点M和N分别为B1C和D1D的中点.
(I)求证:MN∥平面ABCD;
(II)求二面角D1-AC-B1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设命题p:a,b都是偶数,则¬p为(  )
A.a,b都不是偶数B.a,b不都是偶数
C.a,b都是奇数D.a,b一个是奇数一个是偶数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆O:x2+y2=4与x轴相交于A,B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={1,2,3},B={2,5},则A∩B=(  )
A.{1,3,5}B.{1,5}C.{2}D.{1,2,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出下列命题:①存在实数x,使$sinx+cosx=\frac{3}{2}$;②若α,β是第一象限角,且α>β,则cosα>cosβ;③函数$y=sin(\frac{2}{3}x+\frac{π}{2})$是偶函数;④函数y=sin2x的图象向左平移$\frac{π}{4}$个单位,得到函数$y=sin(2x+\frac{π}{4})$的图象.
其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等差数列{an}中,a2=6,a3+a6=27.
(1)求数列{an}的通项公式;
(2)若数列{bn}的通项公式为${b_n}={3^{n-1}}$,求数列{an•bn}的前n项的和Tn

查看答案和解析>>

同步练习册答案