精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$+log2x.
(1)求f(2),f($\frac{1}{2}$),f(4),f($\frac{1}{4}$)的值,并计算f(2)+f($\frac{1}{2}$),f(4)+f($\frac{1}{4}$);
(2)求f(1)+f(2)+f(3)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…f($\frac{1}{2016}$)的值.

分析 (1)由f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$+log2x,能求出f(2),f($\frac{1}{2}$),f(4),f($\frac{1}{4}$),f(2)+f($\frac{1}{2}$),f(4)+f($\frac{1}{4}$)的值.
(2)由f(x)+f($\frac{1}{x}$)=1,能求出f(1)+f(2)+f(3)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…f($\frac{1}{2016}$)的值.

解答 解:(1)∵f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$+log2x,
∴f(2)=$\frac{4}{1+4}+1$=$\frac{9}{5}$,
f($\frac{1}{2}$)=$\frac{\frac{1}{4}}{1+\frac{1}{4}}-1=-\frac{4}{5}$,(2分)
f(4)=$\frac{16}{1+16}+2=\frac{50}{17}$,
f($\frac{1}{4}$)=$\frac{\frac{1}{16}}{1+\frac{1}{16}}-2=-\frac{33}{17}$,(4分)
∴f(2)+f($\frac{1}{2}$)=1,f(4)+f($\frac{1}{4}$)=1.(6分)
(2)∵f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$lo{g}_{2}x+\frac{\frac{1}{{x}^{2}}}{1+\frac{1}{{x}^{2}}}+lo{g}_{2}\frac{1}{x}$=1,(9分)
∴f(1)+f(2)+f(3)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…f($\frac{1}{2016}$)
=f(1)+[f(2)+f($\frac{1}{2}$)]+[f(3)+f($\frac{1}{3}$)]+…+[f(2016)+f($\frac{1}{2016}$)]
=$\frac{1}{2}+2015×1$
=$\frac{4031}{2}$.(12分)

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数$f(x)={(\frac{1}{2})^x}$-2的图象不经过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.使不等式${2^x}>\frac{8}{x}$成立的x的取值范围为(-∞,0)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,既是奇函数又是增函数的是(  )
A.y=x+1B.y=-x3C.y=x|x|D.$y=\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1上一点P到点(5,0)的距离为15,则点P到点(-5,0)的距离为23或7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在边长为4的菱形ABCD中,∠BAD=60°,E为CD的中点,则$\overrightarrow{AE}$•$\overrightarrow{BD}$=(  )
A.4B.8C.-6D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量$\overrightarrow{m}$=(2a,1),$\overrightarrow{n}$=(2b-c,cosC),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(Ⅰ)求角A的大小;
(Ⅱ)若$a=\sqrt{3}$,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,已知正方形的面积为100,向正方形内随机地撒200颗黄豆,数得落在阴影外的黄豆数为114颗,以此实验数据为依据,可以估计出阴影部分的面积约为(  )
A.53B.43C.47D.57

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆C:(x-1)2+(y-1)2=9,直线l:y=kx+3与圆C相交于A、B两点,M为弦AB上一动点,以M为圆心,1为半径的圆与圆C总有公共点,则实数k的取值范围(  )
A.(-∞,0]B.[$\frac{4}{3}$,+∞)C.[0,$\frac{4}{3}$]D.(0,$\frac{4}{3}$]

查看答案和解析>>

同步练习册答案