精英家教网 > 高中数学 > 题目详情
15.已知实数x,y满足$\left\{\begin{array}{l}{x+y-4≤0}\\{y-1≥0}\\{x-1≥0}\end{array}\right.$,则z=$\frac{{y}^{2}}{x}$的最大值是 (  )
A.$\frac{1}{3}$B.9C.2D.11

分析 作出不等式组对应的平面区域要使z=$\frac{{y}^{2}}{x}$,则x最小,y最大即可,利用数形结合进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
则x≥1,y≥1,
要使z=$\frac{{y}^{2}}{x}$最大,则x最小,y最大即可,
由图象知当z=$\frac{{y}^{2}}{x}$经过点A时,z取得最大值,
由$\left\{\begin{array}{l}{x=1}\\{x+y=4}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
则z=$\frac{{y}^{2}}{x}$的最大值是z=$\frac{{3}^{2}}{1}$=9,
故选:B

点评 本题主要考查线性规划的应用,利用数形结合判断x,y的取值关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.焦点为F(0,-1)的抛物线的标准方程是x2=-4y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)过点(1,$\frac{3}{2}$),左、右焦点为F1、F2,右顶点为A,上顶点为B,且|AB|=$\frac{\sqrt{7}}{2}$|F1F2|.
(1)求椭圆E的方程;
(2)过点M(-4,0)作斜率为k(k≠0)的直线l,交椭圆E于P、Q两点,N为PQ中点,问是否存在实数k,使得以F1F2为直径的圆经过N点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的函数f(x),满足f(x+1)=f(x-1),且f(x+2)=f(2-x),且f(x)在[-3,-2]上是减函数,如果A,B是锐角三角形的两个内角,则(  )
A.f(sinA)>f(cosB)B.f(cosB)>f(sinA)C.f(sinA)>f(sinB)D.f(cosB)>f(cosA)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设Sn为各项不相等的等差数列{an}的前n项和,已知a3a5=3a7,S3=9.
(1)求数列{an}通项公式;
(2)设Tn为数列{${\frac{1}{{{a_n}{a_{n+1}}}}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足:a1=2,an+1=(${\sqrt{{a_n}-1}$+1)2+1,则a12=(  )
A.101B.122C.145D.170

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知关于x的方程x2+(a2-1)x+a-2=0的一个根比1大,另一个根比1小,则实数a的取值范围是(  )
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-2,1)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)是定义在R上的奇函数,且是以2为周期的周期函数,若当x∈[0,1)时,f(x)=2x-1,则f(${log_{\frac{1}{2}}}$5)的值为-$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案