精英家教网 > 高中数学 > 题目详情
3.定义在R上的函数f(x),满足f(x+1)=f(x-1),且f(x+2)=f(2-x),且f(x)在[-3,-2]上是减函数,如果A,B是锐角三角形的两个内角,则(  )
A.f(sinA)>f(cosB)B.f(cosB)>f(sinA)C.f(sinA)>f(sinB)D.f(cosB)>f(cosA)

分析 由题意可知:函数为偶函数,周期为2,根据偶函数的对称轴及单调性即可求得f(x)在[0,1]上为单调增函数,由α,β是锐角三角形的两个内角,求得α和β的取值范围,根据函数的单调性即可求得答案

解答 解:由f(x+2)=f(x),∴函数的周期为2,∵f(x)在[-3,-2]上为减函数,
∴f(x)在[-1,0]上为减函数,
∵f(2-x)=f(x+2)=f(x-2)∴f(x)=f(-x),f(x)为偶函数,
∴f(x)在[0,1]上为单调增函数.
∵在锐角三角形中,∵α,β是锐角,且∴α+β$>\frac{π}{2}$,∴$\frac{π}{2}>$α>$\frac{π}{2}-β>0$,∴sinα>sin($\frac{π}{2}$-β)=cosβ,
∴f(x)在[0,1]上为单调增函数.
∴f(sinα)>f(cosβ),
故选:A.

点评 本题主要考查了函数的奇偶性和周期性的应用,以及三角函数的图象和性质,诱导公式的应用,综合性较强,涉及的知识点较多,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知命题p:?x0<0,sinx0>0且tanx0>0,则命题p的否定为(  )
A.?x<0,sinx≤0或tanx≤0B.?x<0,sinx≤0且tanx≤0
C.?x≥0,sinx≤0或tanx≤0D.?x≥0,sinx≤0且tanx≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(x2+bx+b)ex
(1)当b=1时,求函数f(x)的增区间.
(2)当0<b≤2时,求函数f(x)在[-2b,b]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知O为坐标原点,向量$\overrightarrow{OA}$=(sinx,1),$\overrightarrow{OB}$=(cosx,0),$\overrightarrow{OC}$=(-sinx,2),点P满足$\overrightarrow{AB}$=$\overrightarrow{BP}$.
(1)记函数f(x)=$\overrightarrow{PB}$•$\overrightarrow{CA}$,当x∈(-$\frac{π}{8}$,$\frac{π}{2}$)时,讨论函数f(x)的单调性;
(2)设$\overrightarrow{OD}$=(4λ,cos2x),g(x)=$\overrightarrow{OA}$•$\overrightarrow{OD}$,x∈[0,$\frac{π}{2}$],若g(x)的最大值是$\frac{3}{2}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|-2<x<2},B={x|(x+1)(x-3)≤0},则A∩(∁RB)=(  )
A.(-1,2)B.(-2,-1]C.(-2,-1)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)满足f(logax)=$\frac{a}{{a}^{2}-1}$(x-x-1),其中a>0,a≠1.
(Ⅰ)对于函数f(x),当x∈(-1,1)时,f(1-m)+f(1-m2)<0,求实数m的范围;
(Ⅱ)当x∈(-∞,2)时,f(x)<4恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足$\left\{\begin{array}{l}{x+y-4≤0}\\{y-1≥0}\\{x-1≥0}\end{array}\right.$,则z=$\frac{{y}^{2}}{x}$的最大值是 (  )
A.$\frac{1}{3}$B.9C.2D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在棱长为a的正方体ABCD-A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E,F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是(  )
A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角
C.三棱锥P-QEF的体积D.△QEF的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知x=1是f(x)=2x+$\frac{b}{x}$+lnx的一个极值点.
(Ⅰ)求b的值;
(Ⅱ)设函数g(x)=f(x)-$\frac{3+a}{x}$,若函数g(x)在区间[1,2]内单调递增,求实数a的取值范围.

查看答案和解析>>

同步练习册答案