精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=(x2+bx+b)ex
(1)当b=1时,求函数f(x)的增区间.
(2)当0<b≤2时,求函数f(x)在[-2b,b]上的最大值.

分析 (1)当b=1时求出函数的f′(x)=(x2+3x+2)•ex,利用导函数大于0,求解即可.
(2)求出函数的导函数f′(x)=[x2+(2+b)x+2b]ex=(x+2)(x+b)ex.求出极值点,通过极值点的大小,0<b≤1时1<b<2时,利用函数的单调性,求出M即可.

解答 解:(1)当b=1时,f(x)=(x2+x+1)ex
所以f′(x)=(x2+3x+2)•ex
由f′(x)>0,得x>-1或x<-2.
故函数f(x)的增区间为(-∞,-2),(-1,+∞).----------(5分)
(2)因为f(x)=(x2+bx+b)ex,所以f′(x)=[x2+(2+b)x+2b]ex=(x+2)(x+b)ex
由f′(x)=0,得x=-2或x=-b.
当-2≤-2b,即0<b≤1时,函数f(x)在(-2b,-b)上单调递减,在(-b,b)上单调递增,
所以M=max{f(-2b),f(b)},
因为f(-2b)=(2b2+b)•e-2b
f(b)=(2b2+b)•eb
所以M=f(b).
当-2b<-2<-b,即1<b<2时,函数f(x)在(-2b,-2)上单调递增,在(-2,-b)上单调递减,
在(-b,b)上单调递增.
所以M=max{f(-2),f(b)},
因为f(-2)=(4-b)•e-2
且(2b2+b)-(4-b)=2b2+2b-4
=2->0(1<b<2),
所以M=f(b).
当-2=-b,即b=2时,f′(x)≥0,
函数f(x)在(-2b,b)上单调递增,
所以M=f(b).
综上所述,M=f(b)=(2b2+b)eb.----------(14分)

点评 本题考查函数的导数的综合应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.复数2i的平方根±(1+i).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.焦点为F(0,-1)的抛物线的标准方程是x2=-4y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x∈(0,+∞)时,不等式9x-m•3x+m+1>0恒成立,则m的取值范围是(  )
A.2-2$\sqrt{2}$<m<2+2$\sqrt{2}$B.m<2C.m<2+2$\sqrt{2}$D.m$≥2+2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点M、N、K分别为正方体ABCD-A1B1C1D1的棱AB、B1C1、DD1的中点,在正方体的所有面对角线和体对角线所在的直线中,与平面MNK平行的条数为(  )
A.6条B.7条C.8条D.9条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知ABCD是平行四边形,P点是ABCD所在平面外的一点,连接PA、PB、PC、PD.设点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.
(1)试用向量方法证明E、F、G、H四点共面;
(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)过点(1,$\frac{3}{2}$),左、右焦点为F1、F2,右顶点为A,上顶点为B,且|AB|=$\frac{\sqrt{7}}{2}$|F1F2|.
(1)求椭圆E的方程;
(2)过点M(-4,0)作斜率为k(k≠0)的直线l,交椭圆E于P、Q两点,N为PQ中点,问是否存在实数k,使得以F1F2为直径的圆经过N点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的函数f(x),满足f(x+1)=f(x-1),且f(x+2)=f(2-x),且f(x)在[-3,-2]上是减函数,如果A,B是锐角三角形的两个内角,则(  )
A.f(sinA)>f(cosB)B.f(cosB)>f(sinA)C.f(sinA)>f(sinB)D.f(cosB)>f(cosA)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知关于x的方程x2+(a2-1)x+a-2=0的一个根比1大,另一个根比1小,则实数a的取值范围是(  )
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-2,1)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

同步练习册答案