精英家教网 > 高中数学 > 题目详情
4.已知关于x的方程x2+(a2-1)x+a-2=0的一个根比1大,另一个根比1小,则实数a的取值范围是(  )
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-2,1)D.(-∞,-2)∪(1,+∞)

分析 利用二次函数与二次方程的关系,通过零点判定定理,列出不等式求解即可.

解答 解:关于x的方程x2+(a2-1)x+a-2=0的一个根比1大,另一个根比1小,
可知函数y=x2+(a2-1)x+a-2的开口向上,由零点判定定理可知:f(1)<0,
可得:12+a2-1+a-2<0,解得a∈(-2,1).
故选:C.

点评 本题考查函数的零点判定定理的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(x2+bx+b)ex
(1)当b=1时,求函数f(x)的增区间.
(2)当0<b≤2时,求函数f(x)在[-2b,b]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足$\left\{\begin{array}{l}{x+y-4≤0}\\{y-1≥0}\\{x-1≥0}\end{array}\right.$,则z=$\frac{{y}^{2}}{x}$的最大值是 (  )
A.$\frac{1}{3}$B.9C.2D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在棱长为a的正方体ABCD-A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E,F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是(  )
A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角
C.三棱锥P-QEF的体积D.△QEF的面积

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.当物体的温度高于周围介质的温度时,物体就不断冷却,若物体的温度T与时间t的函数关系为T=T(t),则该物体在时刻t的冷却速度为$\frac{dT}{dt}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数列{an}的前n项和Sn=2n,数列{bn}满足:b1=-1,bn+1=bn+(2n-1).(n∈N*)
(1)求数列{an}的通项an;    
(2)求数列{bn}的通项bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1、F2,离心率为$\frac{\sqrt{2}}{2}$,过F2的直线交椭圆E于A、B两点,且三角形ABF1的周长为8$\sqrt{2}$.
(1)求椭圆E的方程;
(2)是否存在直线l1:y=x+m与椭圆E交于不同的C、D两点,且过线段CD的中点M与F2的直线l2垂直于直线l1?若有,求出m的值,若无,请分析说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知x=1是f(x)=2x+$\frac{b}{x}$+lnx的一个极值点.
(Ⅰ)求b的值;
(Ⅱ)设函数g(x)=f(x)-$\frac{3+a}{x}$,若函数g(x)在区间[1,2]内单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=xln(x-1)的零点是2.

查看答案和解析>>

同步练习册答案