16£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬¹ýF2µÄÖ±Ïß½»ÍÖÔ²EÓÚA¡¢BÁ½µã£¬ÇÒÈý½ÇÐÎABF1µÄÖܳ¤Îª8$\sqrt{2}$£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚÖ±Ïßl1£ºy=x+mÓëÍÖÔ²E½»ÓÚ²»Í¬µÄC¡¢DÁ½µã£¬ÇÒ¹ýÏß¶ÎCDµÄÖеãMÓëF2µÄÖ±Ïßl2´¹Ö±ÓÚÖ±Ïßl1£¿ÈôÓУ¬Çó³ömµÄÖµ£¬ÈôÎÞ£¬Çë·ÖÎö˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÒÑÖª½áºÏÍÖÔ²¶¨ÒåÇóµÃa£¬ÔÙÓÉÀëÐÄÂÊÇóµÃc£¬ÓÉÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©ÉèC£¨x1£¬y1£©¡¢D£¨x2£¬y2£©¡¢M£¨x0£¬y0£©£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµÇó³öMµÄ×ø±ê£¬ÔÙÓÉÁ½Ö±ÏßбÂʵĹØÏµÇóµÃmÖµ£¬ÓÉËùÇómÖµ²»Âú×ãÅбðʽ´óÓÚ0£¬¿ÉµÃ²»´æÔÚÖ±Ïßl1ÓëÍÖÔ²E½»ÓÚ²»Í¬µÄC¡¢DÁ½µã£¬ÇÒ¹ýÏß¶ÎCDµÄÖеãMÓëF2µÄÖ±Ïßl2´¹Ö±ÓÚÖ±Ïßl1£®

½â´ð ½â£º£¨1£©ÒÀÌâÒâµÃ£º$|A{F}_{1}|+|A{F}_{2}|+|B{F}_{1}|+|B{F}_{2}|=2a+2a=4a=8\sqrt{2}$£¬µÃa=$2\sqrt{2}$£®
 ÓÖ¡ße=$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬½âµÃc=2£¬¡àb2=a2-c2=4£®
¡àÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$£»
£¨2£©ÉèC£¨x1£¬y1£©¡¢D£¨x2£¬y2£©¡¢M£¨x0£¬y0£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\\{y=x+m}\end{array}\right.$£¬ÏûÈ¥yµÃ3x2+4mx+2m2-8=0£®
¡à${x}_{1}+{x}_{2}=-\frac{4m}{3}$£¬${y}_{1}+{y}_{2}=£¨{x}_{1}+{x}_{2}£©+2m=-\frac{4m}{3}+2m=\frac{2m}{3}$£®

¡à${x}_{0}=\frac{{x}_{1}+{x}_{2}}{2}=-\frac{2m}{3}£¬{y}_{0}=\frac{{y}_{1}+{y}_{2}}{2}=\frac{m}{3}$£¬
¡àM£¨$-\frac{2m}{3}£¬\frac{m}{3}$£©£®
¡ßÖ±Ïßl2´¹Ö±ÓÚÖ±Ïßl1£¬¡à${k}_{{l}_{2}}=\frac{\frac{m}{3}-0}{-\frac{2m}{3}-2}=-1$£¬µÃm=-6£®
ÓÖ¡ßÖ±Ïßl1ÓëÍÖÔ²E½»ÓÚ²»Í¬µÄC¡¢DÁ½µã£¬
¡à¡÷=96-8m2£¾0£¬½âµÃ-2$\sqrt{3}$£¼m£¼2$\sqrt{3}$£®
m=-6∉£¨-$2\sqrt{3}$£¬2$\sqrt{3}$£©£¬
¡à²»´æÔÚÖ±Ïßl1ÓëÍÖÔ²E½»ÓÚ²»Í¬µÄC¡¢DÁ½µã£¬ÇÒ¹ýÏß¶ÎCDµÄÖеãMÓëF2µÄÖ±Ïßl2´¹Ö±ÓÚÖ±Ïßl1£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²±ê×¼·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Ó㬿¼²éÖ±Ïß´¹Ö±ÓëбÂʵĹØÏµ£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÍÖÔ²E£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©¹ýµã£¨1£¬$\frac{3}{2}$£©£¬×ó¡¢ÓÒ½¹µãΪF1¡¢F2£¬ÓÒ¶¥µãΪA£¬É϶¥µãΪB£¬ÇÒ|AB|=$\frac{\sqrt{7}}{2}$|F1F2|£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©¹ýµãM£¨-4£¬0£©×÷бÂÊΪk£¨k¡Ù0£©µÄÖ±Ïßl£¬½»ÍÖÔ²EÓÚP¡¢QÁ½µã£¬NΪPQÖе㣬ÎÊÊÇ·ñ´æÔÚʵÊýk£¬Ê¹µÃÒÔF1F2Ϊֱ¾¶µÄÔ²¾­¹ýNµã£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÊýÁÐ{an}Âú×㣺a1=2£¬an+1=£¨${\sqrt{{a_n}-1}$+1£©2+1£¬Ôòa12=£¨¡¡¡¡£©
A£®101B£®122C£®145D£®170

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖª¹ØÓÚxµÄ·½³Ìx2+£¨a2-1£©x+a-2=0µÄÒ»¸ö¸ù±È1´ó£¬ÁíÒ»¸ö¸ù±È1С£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-1£¬1£©B£®£¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£©C£®£¨-2£¬1£©D£®£¨-¡Þ£¬-2£©¡È£¨1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=-2|x|+1£¬¶¨Ò庯ÊýF£¨x£©=$\left\{\begin{array}{l}{f£¨x£©£¬x£¾0}\\{-f£¨x£©£¬x£¼0}\end{array}\right.$£¬ÔòF£¨x£©ÊÇ£¨¡¡¡¡£©
A£®Ææº¯ÊýB£®Å¼º¯Êý
C£®¼ÈÊÇÆæº¯ÊýÓÖÊÇżº¯ÊýD£®·ÇÆæ·Çżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\frac{a}{x}$+$\frac{x}{a}$-£¨a-$\frac{1}{a}$£©lnx£¨a£¾0£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼äºÍ¼«Öµ£»
£¨2£©Ö¤Ã÷£ºµ±a¡Ê[$\frac{1}{2}$£¬2]ʱ£¬º¯Êýf£¨x£©Ã»ÓÐÁãµã£¨Ìáʾ£ºln2¡Ö0.69£¬ln3¡Ö1.1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®´óÑÜÊýÁУ¬À´Ô´ÓÚÖйú¹Å´úÖø×÷¡¶Ç¬À¤Æ×¡·ÖжÔÒ×´«¡°´óÑÜÖ®ÊýÎåÊ®¡±µÄÍÆÂÛ£®Æäǰ10ÏîΪ£º0¡¢2¡¢4¡¢8¡¢12¡¢18¡¢24¡¢32¡¢40¡¢50£®
ͨÏʽ£ºan=$\left\{\begin{array}{l}{\frac{{n}^{2}-1}{2}£¬nÎªÆæÊý}\\{\frac{{n}^{2}}{2}£¬nΪżÊý}\end{array}\right.$       
Èç¹û°ÑÕâ¸öÊýÁÐ{an}ÅųÉÓÒ²àÐÎ×´£¬²¢¼ÇA£¨m£¬n£©±íʾµÚmÐÐÖдÓ×óÏòÓÒµÚn¸öÊý£¬ÔòA£¨10£¬4£©µÄֵΪ3612£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬ÇÒÊÇÒÔ2ΪÖÜÆÚµÄÖÜÆÚº¯Êý£¬Èôµ±x¡Ê[0£¬1£©Ê±£¬f£¨x£©=2x-1£¬Ôòf£¨${log_{\frac{1}{2}}}$5£©µÄֵΪ-$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èôtan¦Á-$\frac{1}{tan¦Á}$=$\frac{3}{2}$£¬¦Á¡Ê£¨${\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}}$£©£¬Ôòsin£¨2¦Á+$\frac{¦Ð}{4}}$£©µÄֵΪ£¨¡¡¡¡£©
A£®$-\frac{{\sqrt{2}}}{5}$B£®$\frac{{\sqrt{2}}}{5}$C£®$-\frac{{\sqrt{2}}}{10}$D£®$\frac{{\sqrt{2}}}{10}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸