精英家教网 > 高中数学 > 题目详情
9.若x,y∈R+且2x+y=1,则$\frac{1}{x}+\frac{1}{y}$的最小值(  )
A.$3+2\sqrt{2}$B.$3-2\sqrt{2}$C.1D.$\frac{1}{2}$

分析 由题意可得$\frac{1}{x}+\frac{1}{y}$=($\frac{1}{x}+\frac{1}{y}$)(2x+y)=3+$\frac{y}{x}$+$\frac{2x}{y}$,由基本不等式可得.

解答 解:∵x,y∈R+且2x+y=1,
∴$\frac{1}{x}+\frac{1}{y}$=($\frac{1}{x}+\frac{1}{y}$)(2x+y)
=3+$\frac{y}{x}$+$\frac{2x}{y}$≥3+2$\sqrt{\frac{y}{x}•\frac{2x}{y}}$=3+2$\sqrt{2}$
当且仅当$\frac{y}{x}$=$\frac{2x}{y}$即x=$\frac{2-\sqrt{2}}{2}$且y=$\sqrt{2}$-1时取等号.
故选:A.

点评 本题考查基本不等式求最值,整体代入变形为可用基本不等式的形式是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知a=4,c=3,cosA=-$\frac{1}{3}$.
(1)求角C的大小;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如果U={1,2,3,4,5},M={1,2,3},N={x|4<x≤6},那么(∁UM)∩N等于(  )
A.B.{5}C.{1,3}D.{4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,$acosB-bcosA=\frac{3}{5}c$,则tanAcotB=(  )
A.2B.3C.4D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若$\overrightarrow a=({1,3}),\overrightarrow b=({x,6})$,且$\overrightarrow a∥\overrightarrow b$,则x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A={x∈Z|0≤x≤8},B={1,2,3,4,5},则∁AB=(  )
A.{6,7,8}B.{0,6,7,8}C.{0,6,7 }D.{6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.我校某高一学生为了获得华师一附中荣誉毕业证书,在“体音美2+1+1项目”中学习游泳.他每次游泳测试达标的概率都为60%,现采用随机模拟的方法估计该同学三次测试恰有两次达标的概率:先由计算器产生0到9之间的整数随机数,指定1,2,3,4表示未达标,5,6,7,8,9,0表示达标;再以每三个随机数为一组,代表三次测试的结果,经随机模拟产生了如下20组随机数:
917   966   891   925   271   932   872   458   569   683
431   257   393   027   556   488   730   113   507   989
据此估计,该同学三次测试恰有两次达标的概率为(  )
A.0.50B.0.40C.0.43D.0.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=2sin({ωx+φ})({ω>0,|φ|≤\frac{π}{2}})$,其图象与直线y=-2相邻两个交点的距离为π.若f(x)>1对于任意的$x∈({-\frac{π}{12},\frac{π}{6}})$恒成立,则φ的取值范围是(  )
A.$[{\frac{π}{6},\frac{π}{3}}]$B.$[{\frac{π}{3},\frac{π}{2}}]$C.$[{\frac{π}{12},\frac{π}{3}}]$D.$({\frac{π}{6},\frac{π}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知|$\overrightarrow{a}$|=6,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$,求
(1)$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)$\overrightarrow{a}$2
(3)$\overrightarrow{b}$2

查看答案和解析>>

同步练习册答案