精英家教网 > 高中数学 > 题目详情
已知关于x的方程9x+m•3x+6=0(其中m∈R).
(1)若m=-5,求方程的解;
(2)若方程没有实数根,求实数m的取值范围.
分析:(1)当m=-5时,方程即为9x-5•3x+6=0,利用换元法,令3x=t(t>0),方程可转化为t2-5t+6=0,可求t进而可求x
(2)令3x=t(t>0),方程可转化为t2+mt+6=0①,要使原方程没有实数根,应使方程①没有实数根,或者没有正实数根,结合二次方程可求
解答:解:(1)当m=-5时,方程即为9x-5•3x+6=0,
令3x=t(t>0),方程可转化为t2-5t+6=0,
解得t=2或t=3,
由3x=2得x=log32,由3x=3得x=1,
故原方程的解为1,log32.
(2)令3x=t(t>0).
方程可转化为t2+mt+6=0①
要使原方程没有实数根,应使方程①没有实数根,或者没有正实数根.
当方程①没有实数根时,需△=m2-24<0,
解得-2
6
<m<2
6

当方程①没有正实数根时,方程有两个相等或不相等的负实数根,
这时应有
△=m2-24≥0
-m<0
,解得m≥2
6

综上,实数m的取值范围为m>-2
6
点评:本题主要考查了利用换元法求解二次方程的根,解题的难点在于(2)中二次方程的根有限制条件时,要注意结合二次函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)已知关于x的方程9x-(4+a)•3x+4=0有两个实数解x1,x2,则
x12+x22x1x2
的最小值是
2
2

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省长沙市高三第六次月考理科数学卷 题型:填空题

已知关于x的方程9x-(4+a)·3x+4=0有两个实数解x1,x2,则的最小值是   

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程9x-(4+a)·3x+4=0有两个实数解x1x2,则的最小值是    

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南省永州市蓝山二中高三第六次联考数学试卷(理科)(解析版) 题型:解答题

已知关于x的方程9x-(4+a)•3x+4=0有两个实数解x1,x2,则的最小值是   

查看答案和解析>>

同步练习册答案