精英家教网 > 高中数学 > 题目详情
15.在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一点D,使△ABD为钝角三角形的概率为$\frac{1}{3}$.

分析 满足条件的事件是组成钝角三角形,包括两种情况,第一种∠ADB为钝角,第二种∠BAD为钝角,根据几何概型的概率公式进行计算即可.

解答 解:由题意知本题是一个等可能事件的概率,试验发生包含的事件对应的是长度为3的一条线段,
满足条件的事件是组成钝角三角形,包括两种情况
第一种∠ADB为钝角,这种情况的分界是∠ADB=90°的时候,此时BD=1
∴这种情况下,满足要求的0<BD<1.
第二种∠BAD为钝角,这种情况的分界是∠BAD=90°的时候,此时BD=4
∴这种情况下,不可能
综合两种情况,若△ABD为钝角三角形,则0<BD<1
P=$\frac{1}{3}$
故答案为:$\frac{1}{3}$

点评 本题考查了几何概率的求解,根据几何概型的概率公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知集合A={x|a+1≤x≤2a+3},B={x|x2-3x-4≤0}.若x∈A是x∈B的充分条件,则实数a的取值范围是(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.(文)已知复数z=6+8i,则-|z|=(  )
A.-5B.-10C.$\frac{14}{9}$D.-$\frac{16}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|x-2≤0,x∈R},B={x|x<-1,x∈R},C={x|x>-2},求A∩B,A∩C,(A∩B)∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在求某些函数的导数时,可以先在解析式两边取对数,再求导数,这比用一般方法求导数更为简单,如求y=xex的导数,可先在两边取对数,得lny=lnxex=exlnx,再在两边分别对x求导数,得$\frac{1}{y}•{y^'}={e^x}lnx+{e^x}•\frac{1}{x}$即为$y_x^'=y({{e^x}lnx+{e^x}•\frac{1}{x}})$,即导数为$y={x^{e^x}}({{e^x}lnx+\frac{e^x}{x}})$.若根据上面提供的方法计算函数y=xx的导数,则y′=xx(1+lnx).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若有以下命题:其中正确的命题序号是①③.
①两个相等向量的模相等;
②若$\overrightarrow{a}$和$\overrightarrow{b}$都是单位向量,则$\overrightarrow{a}=\overrightarrow{b}$;
③相等的两个向量一定是共线向量;
④$\overrightarrow{a}∥\overrightarrow{b},\overrightarrow{c}∥\overrightarrow{b}$,则$\overrightarrow{a}∥\overrightarrow{c}$;
⑤零向量是唯一没有方向的向量;
⑥两个非零向量的和可以是零.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z=2-i,则$\frac{z+1}{\overline{z}-1}$的虚部为(  )
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知A(2t,t+2,2),B(1+t,2t-1,-2),则|AB|的最小值为(  )
A.34B.$\sqrt{34}$C.6D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|$\frac{6}{x+1}$≥1,x∈R},B={x|x2-2x-m<0},若A∩B={x|-1<x<4},求m的值.

查看答案和解析>>

同步练习册答案