精英家教网 > 高中数学 > 题目详情
16.已知集合A={1,2},B={x|ax-1=0},若A∩B=B,则实数a的取值个数为(  )
A.0B.1C.2D.3

分析 化简可得B⊆A,从而可得B=ϕ,B={1},或B={2};从而分类求得.

解答 解:集合A={1,2},若A∩B=B,
即:B⊆A,则B=ϕ,B={1},或B={2};
①当B=ϕ时,a=0;
②当B={1}时,a-1=0,解得a=1;
③当B={2}时,2a-1=0,解得a=$\frac{1}{2}$;
综上,a有3个值.
故选D.

点评 本题考查了集合的化简运算的应用及分类讨论的思想方法应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.α,β为两个不同的平面,l,m,n为三条不同的直线,且l,m?α,n?β,则下列命题正确的是(  )
A.若l∥β,m∥β,则α∥βB.若n⊥l,n⊥m,则n⊥αC.若n∥l,n∥m,则n∥αD.若l⊥β,m∥n,则l⊥m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|log2x<4},N={y|y=($\frac{1}{2}$)x,x<0},则M∩(∁RN)=(  )
A.(0,1]B.[0,1)C.[1,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.复数($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2014的共轭复数是(  )
A.-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$iB.-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$iC.$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$iD.$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,正方形ABCD的边长为6,点E,F分别在边AD,BC上,且DE=2AE,CF=2BF.若有λ∈(7,16),则在正方形的四条边上,使得$\overrightarrow{PE}$•$\overrightarrow{PF}$=λ成立的点P有(  )个.
A.2B.4C.6D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆C:(x-3)2+(y-5)2=5,过圆心C的直线l交圆C于A,B两点,交y轴于点P.若$\overrightarrow{PA}$=$\frac{1}{4}$$\overrightarrow{AB}$,则直线l的方程为(  )
A.x-2y+7=0B.x+2y-13=0或x-2y+7=0
C.x+2y-13=0D.x+2y+7=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.古有“文王拘而演周易”,后经流传,人们常用卦象来指导生活,而成卦的方式很多,其中一种方式就是用金钱成卦.具体做法就是抛掷三枚不同的硬币A、B、C,硬币落地后只能正面朝上或反面朝上,其中硬币A正面朝上的概率为$\frac{1}{2}$,硬币B正面朝上的概率为$\frac{1}{3}$,硬币C正面朝上的概率为t(0<t<1),设ξ表示正面朝上的硬币枚数.
(Ⅰ)求ξ的分布列及数学期望E(ξ);
(Ⅱ)当an=(2n-1)cos($\frac{6nπ}{5+6t}$E(ξ)),(n∈N*),求数列{|an|}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数z满足(3-4i)•$\overline{z}$=|4+3i|,$\overline{z}$为z的共轭复数,则z的虚部为(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{4}{5}$iD.$\frac{4}{5}$i

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(理)试卷(解析版) 题型:填空题

中,,则的外接圆半径;类比到空间,若三棱锥的三条侧棱两两互相垂直,且长度分别为,则三棱锥的外接球的半径

查看答案和解析>>

同步练习册答案