精英家教网 > 高中数学 > 题目详情
6.α,β为两个不同的平面,l,m,n为三条不同的直线,且l,m?α,n?β,则下列命题正确的是(  )
A.若l∥β,m∥β,则α∥βB.若n⊥l,n⊥m,则n⊥αC.若n∥l,n∥m,则n∥αD.若l⊥β,m∥n,则l⊥m

分析 根据线面位置关系的判定定理和性质进行判断.

解答 解:对于A,由面面平行的判定定理可知,只有当l与m相交时,才有α∥β成立,故A错误;
对于B,由线面垂直的判定定理可知只有当l与m为相交直线时,才有结论n⊥α成立,故B错误;
对于C,当n?α时,显然结论不成立,故C错误;
对于D,∵l⊥β,n?β,∴l⊥n,又m∥n,∴l⊥m.故D正确.
故选D.

点评 本题考查了空间线面位置关系的判定与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知直线l过点(3,-1),且椭圆C:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{36}$=1,则直线l与椭圆C的公共点的个数为(  )
A.1B.1或2C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(n)=log(n+1)(n+2)(n∈N*),定义使f(1)•f(2)•f(3)…f(k)为整数的k(k∈N*)叫做企盼数,则在区间[1,2016]内的企盼数的个数为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=sin2x+$\sqrt{3}$sinx•cosx
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C的对边分别为a,b,c,满足c=$\sqrt{3}$,f(C)=$\frac{3}{2}$,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x,y满足不等式组$\left\{\begin{array}{l}{y≤x}\\{x+y≥2}\\{x≤2}\end{array}\right.$,则z=mx+y(m>1)的最大值与最小值的比值为2,给出下列说法:
①点(1,1)是目标函数取得最小值时的最优解;
②点(2,0)是目标函数取得最大值时的最优解;
③m的取值只能取2;
④m的取值可以有无数个.
其中正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合{f(x)|f(x)=ax2-|x+1|+2a<0,x∈R}为空集,则实数a的取值范围是(  )
A.[$\frac{{\sqrt{3}+1}}{2}$,+∞)B.[$\frac{{\sqrt{3}+1}}{4}$,+∞)C.[$\frac{{\sqrt{3}-1}}{4}$,+∞)D.(-∞,$\frac{{\sqrt{3}-1}}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(0,2),点P(x,y)坐标的(x,y)满足$\left\{\begin{array}{l}x-y-8≤0\\ x+y-14≤0\\ x≥6\end{array}\right.$,则z=S三角形OAP(O是坐标原点)的最值的最优解是(  )
A.最小值有无数个最优解,最大值只有一个最优解
B.最大值、最小值都有无数个最优解
C.最大值有无数个最优解,最小值只有一个最优解
D.最大值、最小值都只有一个最优解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知A,B为抛物线y2=4x上异于原点的两个点,O为坐标原点,直线AB的斜率为2,则△ABO重心的纵坐标为(  )
A.2B.$\frac{4}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={1,2},B={x|ax-1=0},若A∩B=B,则实数a的取值个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案