精英家教网 > 高中数学 > 题目详情
15.已知A,B为抛物线y2=4x上异于原点的两个点,O为坐标原点,直线AB的斜率为2,则△ABO重心的纵坐标为(  )
A.2B.$\frac{4}{3}$C.$\frac{2}{3}$D.1

分析 由题意可设A($\frac{{{y}_{1}}^{2}}{4}$,y1),B($\frac{{{y}_{2}}^{2}}{4}$,y2),运用直线的斜率公式可得kAB=$\frac{4}{{y}_{1}+{y}_{2}}$=2,求得y1+y2=2,由△ABO重心的纵坐标为$\frac{{y}_{1}+{y}_{2}}{3}$,即可得到答案.

解答 解:由题意可设A($\frac{{{y}_{1}}^{2}}{4}$,y1),B($\frac{{{y}_{2}}^{2}}{4}$,y2),
则kAB=$\frac{{y}_{1}-{y}_{2}}{\frac{{{y}_{1}}^{2}}{4}-\frac{{{y}_{2}}^{2}}{4}}$=$\frac{{4(y}_{1}-{y}_{2})}{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}$=$\frac{4}{{y}_{1}+{y}_{2}}$=2,
可得y1+y2=2,
即有△ABO重心的纵坐标为$\frac{{y}_{1}+{y}_{2}}{3}$=$\frac{2}{3}$.
故选:C.

点评 本题考查抛物线的方程和运用,考查直线的斜率公式和三角形的重心坐标的求法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=xlnx,g(x)=-x2+ax-3(a∈R).
(1)若对?x∈(0,+∞),恒有不等式f(x)≥$\frac{1}{2}$g(x),求a得取值范围;
(2)证明:对?x∈(0,+∞),有lnx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.α,β为两个不同的平面,l,m,n为三条不同的直线,且l,m?α,n?β,则下列命题正确的是(  )
A.若l∥β,m∥β,则α∥βB.若n⊥l,n⊥m,则n⊥αC.若n∥l,n∥m,则n∥αD.若l⊥β,m∥n,则l⊥m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}中,a1+a3+a5=105,a4=33,则a20等于(  )
A.-1B.1C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|log3x≥0},B={x|x≤1},则(  )
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.为应对我国人口老龄化问题,某研究院设计了延迟退休方案,第一步:2017年女干部和女工人退休年龄统一规定为55岁;第二步:从2018年开始,女性退休年龄每3年延迟1岁,至2045年时,退休年龄统一规定为65岁,小明的母亲是出生于1964年女干部,据此方案,她退休的年份是2020年.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|log2x<4},N={y|y=($\frac{1}{2}$)x,x<0},则M∩(∁RN)=(  )
A.(0,1]B.[0,1)C.[1,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.复数($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2014的共轭复数是(  )
A.-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$iB.-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$iC.$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$iD.$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数z满足(3-4i)•$\overline{z}$=|4+3i|,$\overline{z}$为z的共轭复数,则z的虚部为(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{4}{5}$iD.$\frac{4}{5}$i

查看答案和解析>>

同步练习册答案