精英家教网 > 高中数学 > 题目详情
11.已知集合{f(x)|f(x)=ax2-|x+1|+2a<0,x∈R}为空集,则实数a的取值范围是(  )
A.[$\frac{{\sqrt{3}+1}}{2}$,+∞)B.[$\frac{{\sqrt{3}+1}}{4}$,+∞)C.[$\frac{{\sqrt{3}-1}}{4}$,+∞)D.(-∞,$\frac{{\sqrt{3}-1}}{4}$)

分析 由题意知 ax2-|x+1|+2a≥0恒成立,再化恒成立问题为函数$g(x)=\frac{|x+1|}{{{x^2}+2}}$的最值问题,利用换元法化简$g(x)=φ(t)=\frac{|t|}{{{t^2}-2t+3}}$.从而讨论去绝对值号并确定函数的最值.

解答 解:∵集合{f(x)|f(x)=ax2-|x+1|+2a<0,x∈R}为空集,
∴ax2-|x+1|+2a≥0恒成立,
∴$a\;≥\;\frac{|x+1|}{{{x^2}+2}}$,
设$g(x)=\frac{|x+1|}{{{x^2}+2}}$,
故a≥g(x)max
令t=x+1,则$g(x)=φ(t)=\frac{|t|}{{{t^2}-2t+3}}$.
①当t=0时,g(x)=φ(t)=0,∴a≥0.
②当t>0时,g(x)=φ(t)=$\frac{t}{{t}^{2}-2t+3}$=$\frac{1}{t+\frac{3}{t}-2}$≤$\frac{\sqrt{3}+1}{4}$,
∴a≥$\frac{{\sqrt{3}+1}}{4}$;
③当t<0时,g(x)=φ(t)=-$\frac{t}{{t}^{2}-2t+3}$=$\frac{1}{-t-\frac{3}{t}+2}$≤$\frac{\sqrt{3}-1}{4}$,
∴a≥$\frac{{\sqrt{3}-1}}{4}$.
综上,取交集得a≥$\frac{{\sqrt{3}+1}}{4}$.
故选B.

点评 本题考查了不等式的恒成立问题及转化思想的应用,同时考查了换元法与分类讨论的思想方法应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设m∈R,实数满足$\left\{{\begin{array}{l}{x≥m}\\{2x-3y+6≥0}\\{3x-2y-6≤0}\end{array}}\right.$,若|x+2y|≤18,则实数m的取值范围是(  )
A.-3≤m≤6B.m≥-3C.$-\frac{68}{7}≤m≤6$D.$-3≤m≤\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等差数列{an}中,a1=-2012,其前n项和为Sn,若$\frac{{{S_{2012}}}}{2012}$-$\frac{{{S_{10}}}}{10}$=2002,则S2014的值等于(  )
A.2011B.-2012C.2014D.2013

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,输出S的值为8,则n的最小正整数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.α,β为两个不同的平面,l,m,n为三条不同的直线,且l,m?α,n?β,则下列命题正确的是(  )
A.若l∥β,m∥β,则α∥βB.若n⊥l,n⊥m,则n⊥αC.若n∥l,n∥m,则n∥αD.若l⊥β,m∥n,则l⊥m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的内角A,B,C的对边分别为a,b,c,且sin(A-B)+sinC=1.
(1)求sinAcosB的值;
(2)若a=2b,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}中,a1+a3+a5=105,a4=33,则a20等于(  )
A.-1B.1C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.为应对我国人口老龄化问题,某研究院设计了延迟退休方案,第一步:2017年女干部和女工人退休年龄统一规定为55岁;第二步:从2018年开始,女性退休年龄每3年延迟1岁,至2045年时,退休年龄统一规定为65岁,小明的母亲是出生于1964年女干部,据此方案,她退休的年份是2020年.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆C:(x-3)2+(y-5)2=5,过圆心C的直线l交圆C于A,B两点,交y轴于点P.若$\overrightarrow{PA}$=$\frac{1}{4}$$\overrightarrow{AB}$,则直线l的方程为(  )
A.x-2y+7=0B.x+2y-13=0或x-2y+7=0
C.x+2y-13=0D.x+2y+7=0

查看答案和解析>>

同步练习册答案