精英家教网 > 高中数学 > 题目详情
12.椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,M在椭圆上,△MF1F2的周长为$2\sqrt{5}+4$,面积的最大值为2.
(I)求椭圆C的方程;
(II)直线y=kx(k>0)与椭圆C交于A,B,连接AF2,BF2并延长交椭圆C于D,E,连接DE.探索AB与DE的斜率之比是否为定值并说明理由.

分析 (I)利用△MF1F2的周长为$2\sqrt{5}+4$,面积的最大值为2.列出方程求出a,b即可得到椭圆方程.
( II)设A(x0,y0),则B(-x0,-y0).直线$AD:x=\frac{{{x_0}-2}}{y_0}y+2$,代入$C:\frac{x^2}{5}+{y^2}=1$,结合$\frac{{{x_0}^2}}{5}+{y_0}^2=1$,代入化简得$(9-4{x_0}){y^2}+4({x_0}-2){y_0}y-y_0^2=0$,设$D(x_1^{\;},{y_1}),E({x_2},{y_2})$,利用韦达定理通过斜率关系,化简求解即可.

解答 解:( I)$|{F_1}{F_2}|+|M{F_1}|+|M{F_2}|=2a+2c=2\sqrt{5}+4$,…2′,
$S=\frac{1}{2}2c•b=bc=2$,…4′
得$a=\sqrt{5},c=2,b=1$,所以$C:\frac{x^2}{5}+{y^2}=1$.…6′
(2)( II)设A(x0,y0),则B(-x0,-y0).
直线$AD:x=\frac{{{x_0}-2}}{y_0}y+2$,…8′
代入$C:\frac{x^2}{5}+{y^2}=1$得$[{{{({x_0}-2)}^2}+5y_0^2}]{y^2}+4({x_0}-2){y_0}y-y_0^2=0$,
因为$\frac{{{x_0}^2}}{5}+{y_0}^2=1$,代入化简得$(9-4{x_0}){y^2}+4({x_0}-2){y_0}y-y_0^2=0$,
设$D(x_1^{\;},{y_1}),E({x_2},{y_2})$,则${y_0}{y_1}=\frac{-y_0^2}{{9-4{x_0}}}$,
所以${y_1}=\frac{{-y_0^{\;}}}{{9-4{x_0}}}$,${x_1}=\frac{{{x_0}-2}}{y_0}{y_1}+2$.…12′
直线$BE:x=\frac{{{x_0}+2}}{y_0}y+2$,
同理可得${y_2}=\frac{{y_0^{\;}}}{{9+4{x_0}}}$,${x_2}=\frac{{{x_0}+2}}{y_0}{y_2}+2$.
所以${k_{DE}}=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{{{y_1}-{y_2}}}{{\frac{{{x_0}-2}}{y_0}{y_1}-\frac{{{x_0}+2}}{y_0}{y_2}}}=\frac{{{y_1}-{y_2}}}{{\frac{x_0}{y_0}({y_1}-{y_2})-2\frac{{{y_1}+{y_2}}}{y_0}}}=\frac{1}{{\frac{x_0}{y_0}-\frac{2}{y_0}•\frac{{{y_1}+{y_2}}}{{{y_1}-{y_2}}}}}$
=$\frac{1}{{\frac{x_0}{y_0}+-\frac{2}{y_0}•\frac{{4{x_0}}}{9}}}=9\frac{y_0}{x_0}=9k$,
所以kDE:k=9.       …15′
(其他解法酌情给分)

点评 本题考查椭圆的简单性质,椭圆方程的求法,直线与椭圆的位置关系的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知i是复数的虚数单位,若复数z(1+i)=|2i|,则复数z=(  )
A.1-iB.-1+iC.1+iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(m,4),且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的射影为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:“?x∈R,x2-2x+2>0”,则¬p是(  )
A.?x∈R,x2-2x+2≤0B.?x0∈R,$x_0^2-2{x_0}+2>0$
C.?x0∈R,$x_0^2-2{x_0}+2<0$D.?x0∈R,$x_0^2-2{x_0}+2≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列不等式恒成立的个数有(  )
①ab≤($\frac{a+b}{2}$)2≤$\frac{{a}^{2}+{b}^{2}}{2}$(a,b∈R);    
②若实数a>0,则lga+$\frac{1}{lga}$≥2;
③若实数a>1,则a+$\frac{4}{a-1}$≥5.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)的实轴长为4$\sqrt{3}$,焦点到渐近线的距离为$\sqrt{3}$.
(1)求此双曲线的方程;
(2)已知直线y=$\frac{{\sqrt{3}}}{3}$x-2与双曲线的右支交于A,B两点,且在双曲线的右支上存在点C,使得$\overrightarrow{OM}$+$\overrightarrow{OB}$=m$\overrightarrow{OC}$,求m的值及点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若点(2a,a+1)在圆x2+(y-1)2=5的内部,则a的取值范围是-1<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合M={x|-1≤x<3 },N={x|2<x≤5},则M∪N={x|-1≤x≤5}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在边长为4的等边△ABC(如图1所示)中,MN∥BC,E为BC的中点,连接AE交MN于点F,现将△AMN沿MN折起,使得平面AMN⊥平面MNCB(如图2所示).
(1)求证:平面ABC⊥平面AEF;
(2)若SBCNM=3S△AMN,求直线AB与平面ANC所成角的正弦值.

查看答案和解析>>

同步练习册答案