科目:高中数学 来源: 题型:
某公司准备将100万元资金投入代理销售业务,现有A,B两个项目可供选择:
(1)投资A项目一年后获得的利润X1(万元)的概率分布列如下表所示:
| X1 | 11 | 12 | 17 |
| P | a | 0.4 | b |
且X1的数学期望E(X1)=12;
(2)投资B项目一年后获得的利润X2(万元)与B项目产品价格的调整有关,B项目产品价格根据销售情况在4月和8月决定是否需要调整,两次调整相互独立且在4月和8月进行价格调整的概率分别为p(0<p<1)和1-p.经专家测算评估:B项目产品价格一年内调整次数X(次)与X2的关系如下表所示:
| X(次) | 0 | 1 | 2 |
| X2(万元) | 4.12 | 11.76 | 20.40 |
(1)求a,b的值;
(2)求X2的分布列;
(3)若E(X1)<E(X2),则选择投资B项目,求此时p的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.
![]()
(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数,以下是甲、乙所作频数统计表的部分数据.
甲的频数统计表(部分)
![]()
乙的频数统计表(部分)
![]()
当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;
(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
有一批货物需要用汽车从城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:
| 所用的时间(天数) | 10 | 11 | 12 | 13 |
| 通过公路1的频数 | 20 | 40 | 20 | 20 |
| 通过公路2的频数 | 10 | 40 | 40 | 10 |
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发.
(1)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径.
(2)若通过公路1、公路2的“一次性费用”分别为3.2万元、1.6万元(其他费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到,每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,销售商将少支付给生产商2万元.如果汽车A、B长期按(1)中所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.
(注:毛利润=销售商支付给生产商的费用-一次性费用)
查看答案和解析>>
科目:高中数学 来源: 题型:
对于不等式
≤n+1(n∈N*),某人的证明过程如下:
1°当n=1时,
≤1+1,不等式成立.
2°假设n=k(k∈N*)时不等式成立,即
=
=(k+1)+1.
∴当n=k+1时,不等式成立.
上述证法( )
A.过程全都正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com