分析 (Ⅰ)由正弦定理、两角和的正弦公式化简已知的式子,由内角的范围求出cosB的值,由平方关系和三角函数值的符号求出sinB的值;
(Ⅱ)由余弦定理得b2=a2+c2-2accosB,把已知的条件代入化简求值,利用完全平方公式求出a+c的值.
解答 解:(Ⅰ)在△ABC中,由题意得$\frac{cosB}{cosC}=\frac{5b}{13a-5c}$,
则由正弦定理得$\frac{cosB}{cosC}=\frac{5sinB}{13sinA-5sinC}$,
13cosBsinA-5cosBsinC=5cosCsinB,
13cosBsinA=5sin(B+C)=5sinA,
又0<A<π,则cosB=$\frac{5}{13}$,
所以sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{12}{13}$;
(Ⅱ)由余弦定理得,b2=a2+c2-2accosB,
因为accosB=5,b2=ac,
所以ac=13,a2+c2=23,
所以a+c=$\sqrt{(a+c)^{2}}$=$\sqrt{23+26}$=7.
点评 本题考查了正弦、余弦定理,两角和的正弦公式,以及整体思想求值,注意三角函数值的符号.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1 | B. | $\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{5}$=1 | C. | $\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1或-$\frac{25}{64}$ | B. | -$\frac{23}{38}$ | C. | -2 | D. | -3或-$\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1,1} | B. | {-1,1,2} | C. | {-1,1} | D. | {-2,-1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com