精英家教网 > 高中数学 > 题目详情
4.设f(x)=cos(2x+$\frac{π}{3}$)+sin2x,求f(x)的最小正周期和f(x)的值域.

分析 由三角函数公式化简可得f(x)=$\frac{1-cos2x}{2}$=-$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$,可得周期和值域.

解答 解:由三角函数公式化简可得f(x)=cos(2x+$\frac{π}{3}$)+sin2x
=$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x+$\frac{1-cos2x}{2}$=-$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$,
∴f(x)的最小正周期T=$\frac{2π}{2}$=π,
f(x)的值域为[$\frac{1-\sqrt{3}}{2}$,$\frac{1+\sqrt{3}}{2}$]

点评 本题考查三角函数恒等变换,涉及三角函数的周期性和值域,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax2+2x+1,x∈R
(1)当a=-$\frac{1}{2}$时,根据单调函数定义证明f(x)在[2,+∞)上是减函数
(2)若f(x)在[0,2]上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)是R上的偶函数,当x≥0时,f(x)=$\sqrt{x}$.
(1)求f(x)的解析式.
(2)判断f(x)在区间(0,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.f(x)=9-ax2(a>0)在[0,3]上的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数y=log${\;}_{\frac{1}{2}}$(x2-2x+a)的定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点A(3,2),B($\sqrt{3}$+1,1),过点P(1,0)的直线L与线段AB有公共点,
(1)求直线L的斜率k的取值范围.
(2)求直线L的倾斜角α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数图象的顶点坐标是(1,4),又图象过点A(-1,0),
(1)求这个函数的解析式;
(2)若x∈[-2,2]时,求函数的最值;
(3)若f(x)与两坐标轴的交点分别为A、B、C,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知角α的顶点在原点,角α的始边与x轴正半轴重合,点M(-1,2)是α的终边上的一点,若β是第二象限角,且sinβ=$\frac{3}{5}$,求sin(α+β),tan(2α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)的定义域是[4,5],则函数f(x2+3)的定义域是(  )
A.[1,$\sqrt{2}$]B.[-$\sqrt{2}$,-1]∪[1,$\sqrt{2}$]C.[$\sqrt{2}$,+∞)D.(-∞,-$\sqrt{2}$)∪[$\sqrt{2}$,+∞)

查看答案和解析>>

同步练习册答案