精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A、B、C的对边分别为a,b,c,且2asinB﹣ bcosA=0.
(1)求cosA;
(2)若a= ,b=2,求△ABC的面积.

【答案】
(1)解:在△ABC中,内角A、B、C的对边分别为a,b,c,

将等式2asinB﹣ bcosA=0,利用正弦定理化简得:2sinAsinB﹣ sinBcosA=0,

∵sinB≠0,∴2sinA﹣ cosA=0,即tanA=

则cosA= =


(2)解:∵cosA= ,∴sinA=

∵a= ,b=2,

∴由正弦定理得:sinB= = ,cosB=

∴sinA=cosB,cosA=sinB,即A+B=C=

则SABC= × ×2=


【解析】(1)已知等式利用正弦定理化简,根据sinB不为0确定出tanA的值,进而求出cosA的值;(2)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,再利用正弦定理求出sinB的值,进而求出cosB的值,确定出sinA=cosB,cosA=sinB,即C为直角,确定出三角形面积即可.
【考点精析】关于本题考查的余弦定理的定义,需要了解余弦定理:;;才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C: + =1(a>b>0)的离心率e= ,过点(0,﹣b),(a,0)的直线与原点的距离为 ,M(x0 , y0)是椭圆上任一点,从原点O向圆M:(x﹣x02+(y﹣y02=2作两条切线,分别交椭圆于点P,Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若记直线OP,OQ的斜率分别为k1 , k2 , 试求k1k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算下列几个式子,结果为 的序号是 ①tan25°+tan35° tan25°tan35°,

③2(sin35°cos25°+sin55°cos65°),

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上恒不为零的函数,且对任意的x、y∈R都有f(x)f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),则数列{an}的前n项和Sn的取值范围是(
A.[ ,1)
B.[ ,1]
C.( ,1)
D.( ,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,E是CD上一点,AB=AD=3,AA1=2,CE=1,P是AA1上一点,且DP∥平面AEB1 , F是棱DD1与平面BEP的交点,则DF的长为(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)已知点,曲线在点 处的切线与直线交于点,求为坐标原点)的面积最小时的值,并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.

用煤(吨)

用电(千瓦)

产值(万元)

甲产品

3

50

12

乙产品

7

20

8

但国家每天分配给该厂的煤、电有限,每天供煤至多47吨,供电至多300千瓦,问该厂如何安排生产,使得该厂日产值最大?最大日产值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1=1,Sn+1﹣2Sn=1(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=n+ ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B是抛物线W: 上的两个动点,F是抛物线W的焦点, 是坐标原点,且恒有.

(1)若直线OA的倾斜角为时,求线段AB的中点C的坐标;

(2)求证直线AB经过一定点,并求出此定点.

查看答案和解析>>

同步练习册答案