精英家教网 > 高中数学 > 题目详情
12.在△ABC中,AB=5,AC=3,BC=4,在△ABC内随机取一点P,则点P位于△ABC的内切圆内的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{π}{6}$D.$\frac{π}{4}$

分析 判断三角形为直角三角形,求出△ABC的内切圆的半径,利用面积比,求出点P位于△ABC的内切圆内的概率.

解答 解:△ABC中,AB=5,AC=3,BC=4,所以C=90°,
设△ABC的内切圆的半径为r,则$\frac{1}{2}$(3+4+5)r=$\frac{1}{2}×3×4$,所以r=1,
所以点P位于△ABC的内切圆内的概率为$\frac{π•{1}^{2}}{\frac{1}{2}×3×4}$=$\frac{π}{6}$.
故选:C.

点评 本题考查概率的计算,考查△ABC的内切圆的半径,确定测度,正确计算面积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知{an}是公差不为零的等差数列,其前n项和为Sn,若a2,a7,a22成等比数列,S4=48.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{$\frac{1}{{S}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等比数列{an}的各项均为正数,且a2015=a2014+2a2013,若数列中存在两项am,an,使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,则$\frac{1}{m}+\frac{4}{n}$的最小值为(  )
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{25}{6}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某电视台的一个综艺栏目对5个不同的节目排演出顺序,若最前只能排节目甲或乙,最后不能排节目甲,则不同的排法共有52种(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.阅读如图的程序框图,运行相应的程序,当输入n的值为10时,输出S的值为(  )
A.49B.52C.54D.55

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了解甲、乙两个高三毕业班同学的身体发育情况,从甲、乙两个班中分别抽取20人得到身高的频率分布直方图如下,身高不足160cm的为“发育不良”,否则为“发育良好”.
(Ⅰ)求a及样本数据中甲乙两班身高“发育良好”的人数之和;
(Ⅱ)从身高“发育良好”的人数中按分层抽样的方法抽取5人,再从这5人中任意抽取2人,求至少有一人是甲班学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,AB=3,BC=2,AC=$\sqrt{17}$,AD为BC边上的中线,则△ABD内切圆半径r的值为2$\sqrt{2}$-$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}满足:a4=7,a10=19,其前n项和为Sn
(1)求数列{an}的通项公式an及Sn
(2)若等比数列{bn}的前n项和为Tn,且b1=2,b4=S4,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.判断函数$y={x^2}lg(x+\sqrt{{x^2}+1})$的奇偶性是奇函数.

查看答案和解析>>

同步练习册答案