分析 (1)根据函数单调性定义证明f(x)的单调性;
(2)根据函数的增减性来求特定区间上的最值问题;
解答 解:(1)证明:设任意变量x1,x2且3<x1<x2<5
f(x1)-f(x2)=$\frac{1}{x_1}+{x_1}-\frac{1}{x_2}-{x_2}$
=$\frac{{x}_{2}-{x}_{1}}{{x}_{1}{x}_{2}}+{x}_{1}-{x}_{2}$
=$\frac{({x}_{2}-{x}_{1})(1-{x}_{1}{x}_{2})}{{x}_{1}{x}_{2}}$;
∵3<x1<x2<5
∴x1x2>0,x2-x1>0,1-x1x2<0;
∴f(x1)<f(x2);
∴函数f(x)为x∈[3,5]增函数.
(2)由(1)知函数f(x)为x∈[3,5]增函数;
∴$f{(x)_{max}}=\frac{26}{5},f{(x)_{min}}=\frac{10}{3}$
点评 本题主要考查了函数单调性的定义,以及函数特定区间上的最值问题,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2$\sqrt{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{3\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{(4e-1)\sqrt{2}}{2}$ | B. | $\frac{(4e+1)\sqrt{2}}{2}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{9}{4}$ | C. | 4 | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-16]∪[-8,+∞) | B. | [-16,-8] | C. | (-∞,-8)∪[-4,+∞) | D. | [-8,-4] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com