精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\frac{1}{x}$+x,x∈[3,5].
(1)判断函数f(x)的单调性,并利用单调性定义证明;
(2)求函数f(x)的最大值和最小值.

分析 (1)根据函数单调性定义证明f(x)的单调性;
(2)根据函数的增减性来求特定区间上的最值问题;

解答 解:(1)证明:设任意变量x1,x2且3<x1<x2<5
f(x1)-f(x2)=$\frac{1}{x_1}+{x_1}-\frac{1}{x_2}-{x_2}$
=$\frac{{x}_{2}-{x}_{1}}{{x}_{1}{x}_{2}}+{x}_{1}-{x}_{2}$
=$\frac{({x}_{2}-{x}_{1})(1-{x}_{1}{x}_{2})}{{x}_{1}{x}_{2}}$;
∵3<x1<x2<5
∴x1x2>0,x2-x1>0,1-x1x2<0;
∴f(x1)<f(x2);
∴函数f(x)为x∈[3,5]增函数.
(2)由(1)知函数f(x)为x∈[3,5]增函数;
∴$f{(x)_{max}}=\frac{26}{5},f{(x)_{min}}=\frac{10}{3}$

点评 本题主要考查了函数单调性的定义,以及函数特定区间上的最值问题,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.等差数列{an}的前n项和为Sn,若S5=5,那么2${\;}^{{a}_{1}}$+2${\;}^{{a}_{5}}$的最小值为(  )
A.4B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.点(1,1)到直线x-y+1=0的距离是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,a=5,c=2,S△ABC=4,则b=$\sqrt{17}$或$\sqrt{41}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若C252x=C25x+4,则x的值为(  )
A.4B.7C.4或7D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设点P,Q分别是曲线y=xe-x(e是自然对数的底数)和直线y=x+3上的动点,则P,Q两点间距离的最小值为(  )
A.$\frac{(4e-1)\sqrt{2}}{2}$B.$\frac{(4e+1)\sqrt{2}}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=1-$\sqrt{x+1}$,g(x)=ln(ax2-3x+1),若对任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,则实数a的最大值为(  )
A.2B.$\frac{9}{4}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=4x2+kx-1在区间[1,2]上是单调函数,则实数k的取值范围是(  )
A.(-∞,-16]∪[-8,+∞)B.[-16,-8]C.(-∞,-8)∪[-4,+∞)D.[-8,-4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数$\frac{a+i}{1-i}$是纯虚数,其中i为虚数单位,则实数a的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案