【题目】已知函数
.
(I)若曲线
存在斜率为-1的切线,求实数a的取值范围;
(II)求
的单调区间;
(III)设函数
,求证:当
时,
在
上存在极小值.
【答案】(Ⅰ)
.(Ⅱ)答案见解析;(Ⅲ)证明见解析.
【解析】试题分析:
(1)求出函数的导数,问题转化为
存在大于
的实数根,根据
在
时递增,求出
的范围即可;
(2)求出函数的导数,通过讨论
的范围,判断导数的符号,求出函数的单调区间即可;
(3)求出函数
,根据
,得到存在
,满足
,从而让得到函数单调区间,求出函数的极小值,证处结论即可.
试题解析:
(I)由
得
.
由已知曲线
存在斜率为-1的切线,所以
存在大于零的实数根,
即
存在大于零的实数根,因为
在
时单调递增,
所以实数a的取值范围
.
(II)由
可得
当
时,
,所以函数
的增区间为
;
当
时,若
,
,若
,
,
所以此时函数
的增区间为
,减区间为
.
(III)由
及题设得
,
由
可得
,由(II)可知函数
在
上递增,
所以
,取
,显然
,
,所以存在
满足
,即存在
满足
,所以
,
在区间(1,+∞)上的情况如下:
![]()
- 0 +
↘ 极小 ↗
所以当-1<a<0时,g(x)在(1,+∞)上存在极小值.
科目:高中数学 来源: 题型:
【题目】某辆汽车以
千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求
)时,每小时的油耗(所需要的汽油量)为
升,其中
为常数,且
.
(1)若汽车以
千米/小时的速度行驶时,每小时的油耗为
升,欲使每小时的油耗不超过
升,求
的取值范围;
(2)求该汽车行驶
千米的油耗的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:
态度 调查人群 | 应该取消 | 应该保留 | 无所谓 |
在校学生 | 2100人 | 120人 |
|
社会人士 | 600人 |
|
|
(1)已知在全体样本中随机抽取
人,抽到持“应该保留”态度的人的概率为
,现用分层抽样的方法在所有参与调查的人中抽取
人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取
人,再平均分成两组进行深入交流,求第一组中在校学生人数
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数
在[0,7]上有1和6两个零点,且函数
与函数
都是偶函数,则
在[0,2019]上的零点至少有( )个
A.404B.406C.808D.812
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两动圆
和
(
),把它们的公共点的轨迹记为曲线
,若曲线
与
轴的正半轴的交点为
,且曲线
上的相异两点
满足:
.
(1)求曲线
的轨迹方程;
(2)证明直线
恒经过一定点,并求此定点的坐标;
(3)求
面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的图象与
轴的交点至少有一个在原点右侧.
(1)求实数
的取值范围;
(2)令
,求
的值(其中
表示不超过
的最大整数,例如:
,
);
(3)对(2)中的
求函数
的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为
(t为参数),曲线C1的方程为ρ(ρ-4sin θ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.
(1)求点Q的轨迹C2的直角坐标方程;
(2)直线l与直线C2交于A,B两点,若|AB|≥2
,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com