| A. | 0 | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{9}{4}$ |
分析 求出f(x)以及f′(x),根据x的范围,求出y=[f(x)+f'(x)]2的最小值即可.
解答 解:f(x)=cos2$\frac{x}{2}+\frac{1}{2}$sinx=$\frac{1}{2}$+$\frac{1}{2}$cosx+$\frac{1}{2}$sinx,
故f′(x)=-$\frac{1}{2}$sinx+$\frac{1}{2}$cosx,
故y=[f(x)+f'(x)]2=(cosx+$\frac{1}{2}$)2,
∵x∈[0,π],∴cosx=-$\frac{1}{2}$时,y取到最小值0,
故选:A.
点评 本题考查了导数的应用以及求函数最值问题,考查转化思想,是一道基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A∩B=A | B. | (∁RA)∩B=A | C. | A∩(∁RB)=A | D. | (∁RA)∩(∁RB)=A |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 8 | C. | 9 | D. | 不存在 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com