精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\frac{a{x}^{2}+1}{bx+c}$为奇函数(a、b∈Z),f(1)=2,f(2)<3.
(1)求f(x)的解析式;
(2)当x<0时,确定f(x)的单调递增区间,并证明你的结论.

分析 (1)由题意可得f(-x)=-f(x),即$\frac{a(-x)^{2}+1}{-bx+c}$=-$\frac{a{x}^{2}+1}{bx+c}$可求c,再由f(-1)=-2,f(2)<3结合a,b∈Z 可求a,b,进而可求f(x)
(2)利用导数大于0,可得f(x)的单调递增区间.

解答 解:(1)∵函数f(x)=$\frac{a{x}^{2}+1}{bx+c}$是奇函数,
∴f(-x)=-f(x)
即$\frac{a(-x)^{2}+1}{-bx+c}$=-$\frac{a{x}^{2}+1}{bx+c}$
∴c=0,f(x)=$\frac{a{x}^{2}+1}{bx}$
∵f(-1)=-2,f(2)<3.
∴$\left\{\begin{array}{l}{\frac{a+1}{-b}=-2}\\{\frac{4a+1}{2b}<3}\end{array}\right.$,
∴$\frac{a-2}{a+1}$<0,解得-1<a<2
∵a∈Z
∴a=0或a=1
当a=0时,b=$\frac{1}{2}∉$Z,
当a=1时,b=1,满足题意,此时f(x)=$\frac{1+{x}^{2}}{x}$
(2)∵f(x)=$\frac{1+{x}^{2}}{x}$
∴f′(x)=$\frac{{x}^{2}-1}{{x}^{2}}$
∴x<-1时,f′(x)>0;x>-1时,f′(x)<0,
∴f(x)的单调递增区间是(-∞,-1).

点评 本题综合考查了函数的奇偶性的应用,利用导数判断函数的单调区间的存在及函数性质的研究,考查了考试探索新问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|x2-(3a+3)x+2(3a+1)<0,x∈R},集合B={x|$\frac{x-a}{x-(a+1)}$<0.
(1)求2∉B时,求实数a的取值范围;
(2)求使B⊆A的实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数y=-$\frac{1}{2}$cos2x+cosx-2(π≤x≤$\frac{3}{2}$π)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知在△ABC中,已知$\overrightarrow{AB}•\overrightarrow{CB}$=12,$\overrightarrow{AB}•\overrightarrow{CA}$=-4,则|$\overrightarrow{AB}$|=(  )
A.2$\sqrt{2}$B.4C.4$\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,四边形OABC,ODEF,OGHI是三个全等的菱形,∠COD=∠FOG=∠IOA=60°,设$\overrightarrow{OD}$=$\overrightarrow{a}$,$\overrightarrow{OH}$=$\overrightarrow{b}$,已知点P在各菱形边上运动,且$\overrightarrow{OP}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,x,y∈R,则x+y的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,点(n,Sn)在函数f(x)=2x-1的图象上,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=2n-1,求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a,b,c分别为角A、B、C的对边,且acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3}{2}$b,求证:B≤$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(2,3),求:
(1)$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)(2$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+3$\overrightarrow{b}$);
(3)|$\overrightarrow{a}$+$\overrightarrow{b}$|;
(4)cos<$\overrightarrow{a}$,$\overrightarrow{b}$>

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,已知向量$\overrightarrow{AD}$=$\overrightarrow{DB}$,$\overrightarrow{DF}$=$\overrightarrow{BE}$,求证:$\overrightarrow{DE}$=$\overrightarrow{AF}$.

查看答案和解析>>

同步练习册答案