分析 根据对数函数的性质,对底数a进行讨论,在$[\frac{1}{2},16]$上的最大值为4,最小值为m,解出m的值,在根据$g(x)=(2+m)\sqrt{x}$ 在(0,+∞)上是增函数,确定m的值.
解答 解:函数f(x)=logax(a>0,a≠1)在$[\frac{1}{2},16]$上的最大值为4,最小值为m.
当0<a<1时,则有:$\left\{\begin{array}{l}{m=lo{g}_{a}16}\\{4=lo{g}_{a}\frac{1}{2}}\end{array}\right.$,解得:a=${2}^{-\frac{1}{4}}$,m=-16.
当a>1时,则有:$\left\{\begin{array}{l}{4=lo{g}_{a}16}\\{m=lo{g}_{a}\frac{1}{2}}\end{array}\right.$,解得:a=2,m=-1
又∵$g(x)=(2+m)\sqrt{x}$ 在(0,+∞)上是增函数,
∴2+m>0,∴m>-2.
所以满足题意时,a=2.
故答案为:2.
点评 本题考查了对数函数的性质的运用,当底数大小无法确定时,需要对其进行讨论.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$+log25 | B. | $\frac{1}{2}$+2log25 | C. | $\frac{1}{2}$+log52 | D. | 1+log25. |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 120 cm3 | B. | 80 cm3 | C. | 100 cm3 | D. | 60 cm3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com